Document Type : Original Research Article



The novel Coronavirus disease 2019 caused a global outbreak therefore a promising vaccine is needed to combat it. In this study, the Spike (S) glycoprotein, Membrane (M) protein, and Envelope (E) protein have been tested as putative vaccine candidates. It was demonstrated that the second protrusion part of M protein contains several immunogenic epitopes. On the other hand, the S2 domain of S protein was found to be highly conserved. Therefore, we proposed a fusion protein as a multiepitope-based subunit vaccine including the second protrusion part of M protein and S2 domain of S protein with a flexible linker. Finally, the 3D structure and physicochemical properties of this fusion protein were evaluated to select a stable structure.


[1]. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020: 102433.
[2]. Mustafa N , Zahoor H , Majoo F . Pandemic SARS Coronavirus-2 infections in humans-COVID-19. Bilim. Derg. 2020; (10): 77-93.
[3]. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020; 92(4): 418-23.
[4]. Peeri NC, Shrestha N, Rahman MS, Zaki R, Tan Z, Bibi S, et al. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int. J. Epidemiol. 2020.
[5]. Del Rio C, Malani PN. 2019 Novel coronavirus important information for clinicians. Jama. 2020; 323(11): 1039-40.
[6]. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus infected pneumonia in Wuhan, China. Jama. 2020; 323(11): 1061-69.
[7]. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020; 395(10224): 565-74.
[8]. Iyengar K, Bahl S, Vaishya R, Vaish A. Challenges and solutions in meeting up the urgent requirement of ventilators for COVID-19 patients. Diabetes Metab Syndr. 2020.
[9]. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet.. 2020; 395(10229): 1033.
[10]. Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, et al. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccin Immunother. 2020:1-7.
[11]. Regla-Nava JA, Nieto-Torres JL, Jimenez-Guardeño JM, Fernandez-Delgado R, Fett C, Castaño-Rodríguez C, et al. Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates. J. Virol. 2015; 89(7): 3870-87.
[12]. Menachery VD, Gralinski LE, Mitchell HD, Dinnon KH, Leist SR, Yount BL, et al. Combination attenuation offers strategy for live attenuated coronavirus vaccines. J. Virol. 2018; 92(17).
[13]. Jimenez-Guardeño JM, Regla-Nava JA, Nieto-Torres JL, DeDiego ML, Castaño-Rodriguez C, Fernandez-Delgado R, et al. Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine. PLoS Pathog. 2015; 11(10): 1005215.
[14]. Vartak A, Sucheck SJ. Recent advances in subunit vaccine carriers. Vaccines. 2016; 4(2): 12.
[15]. Ababneh M, Mu’men Alrwashdeh MK. Recombinant adenoviral vaccine encoding the spike 1 subunit of the Middle East respiratory syndrome Coronavirus elicits strong humoral and cellular immune responses in mice. Vet World. 2019; 12(10): 1554.
[16]. Kalita P, Padhi A, Zhang KY, Tripathi T. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb Pathog. 2020: 104236.
[17]. Kim E, Erdos G, Huang S, Kenniston TW, Balmert SC, Carey CD, et al. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBio Med. 2020: 102743.
[18]. Du L, Tai W, Yang Y, Zhao G, Zhu Q, Sun S, et al. Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines. Nat Commun. 2016; 7(1): 1-9.
[19]. Folegatti PM, Bittaye M, Flaxman A, Lopez FR, Bellamy D, Kupke A, et al. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect. Dis. 2020.
[20]. Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol. Rev. 2011; 239(1): 62-84.
[21]. Kato T, Takami Y, Deo VK, Park EY. Preparation of virus-like particle mimetic nanovesicles displaying the S protein of Middle East respiratory syndrome coronavirus using insect cells. J. Biotechnol. 2019; 306: 177-84.
[22]. Chen W-H, Strych U, Hotez PJ, Bottazzi ME. The SARS-CoV-2 vaccine pipeline: an overview. Curr Trop Med Rep. 2020: 1-4.
[23]. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2007; 36: 13-21.
[24]. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook: Springer; 2005. 571-607.
[25]. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC bioinformatics. 2007; 8(1): 4.
[26]. He Y, Xiang Z, Mobley HL. Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development. Biomed Res Int. 2010;2010.
[27]. Shen H-B, Chou K-C. Virus-mPLoc: a fusion classifier for viral protein subcellular location prediction by incorporating multiple sites. J Biomol. Struct Dyn. 2010; 28(2): 175-86.
[28]. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48(D1):D265-D8.
[29]. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019; 47: 427-32.
[30]. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al.: genome-scale protein function classification. Bioinformatics. 2014; 30(9): 1236-40.
[31]. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015; 10(6): 845.
[32]. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nature methods. 2015; 12(1): 7-8.
[33]. Tusnady GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics. 2001; 17(9): 849-50.
[34]. Dobson L, Reményi I, Tusnády GE. CCTOP: a Consensus Constrained TOPology prediction web server. Nucleic Acids Res. 2015; 43: 408-12.
[35]. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 2019;47: 339-43.
[36]. Ponomarenko J, Bui H-H, Li W, Fusseder N, Bourne PE, Sette A, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008; 9(1): 514.
[37]. Kringelum JV, Lundegaard C, Lund O, Nielsen M. Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol. 2012; 8(12).
[38]. Paul S, Sidney J, Sette A, Peters B. TepiTool: a pipeline for computational prediction of T cell epitope candidates. Curr Protoc Immunol. 2016; 114(1): 1-.9.
[39]. Hatcher EL, Zhdanov SA, Bao Y, Blinkova O, Nawrocki EP, Ostapchuck Y, et al. Virus variation resource improved response to emergent viral outbreaks. Nucleic Acids Res. 2017; 45: 482-90.
[40]. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. A multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009; 25(9): 1189-91.
[41]. Stecher G, Tamura K, Kumar S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol Biol Evo. 2020; 37(4): 1237-39.
[42]. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016; 44: 344-50.
[43]. Guo Y-R, Cao Q-D, Hong Z-S, Tan Y-Y, Chen S-D, Jin H-J, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak an update on the status. Mil Med Res. 2020; 7(1): 1-10.
[44]. Guo, L, Yu, K, Li, D, Yang, H, Liu, L, Fan, J, Sun, N,  Yang, X. Potential pathogenesis of multiple organ injury in COVID-19. 2020.
[45]. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020:1-8.
[46]. WHO. Coronavirus disease 2019 (COVID-19) Situation Report.
[47]. Parikhani Arezoo Beig, et al. The inclusive review on SARS-CoV-2 biology, epidemiology, diagnosis, and potential management Options. Current microbiology, (2021): 1-16.
[48]. Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 2020.
[49]. Poland GA, Ovsyannikova IG, Kennedy RB. SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates. Lancet. 2020.
[50]. Xiong S, Wang Y-F, Zhang M-Y, Liu X-J, Zhang C-H, Liu S-S, et al. Immunogenicity of SARS inactivated vaccine in BALB/c mice. Immunol Lett. 2004; 95(2): 139-43.
[51]. Takasuka N, Fujii H, Takahashi Y, Kasai M, Morikawa S, Itamura S, et al. A subcutaneously injected UV-inactivated SARS coronavirus vaccine elicits systemic humoral immunity in mice. Int Immunol. 2004; 16(10): 1423-30.
[52]. He Y, Zhou Y, Siddiqui P, Jiang S. Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry. Biochem Biophys Res Commun. 2004; 325(2): 445-52.
[53]. Agrawal AS, Tao X, Algaissi A, Garron T, Narayanan K, Peng BH, et al. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother. 2016; 12(9): 2351-56.
[54]. Zhang C-h, Lu J-h, Wang Y-f, Zheng H-y, Xiong S, Zhang My, et al. Immune responses in Balb/c mice induced by a candidate SARS-CoV inactivated vaccine prepared from F69 strain. Vaccine. 2005; 23(24): 3196-201.
[55]. Roberts A, Lamirande EW, Vogel L, Baras B, Goossens G, Knott I, et al. Immunogenicity and protective efficacy in mice and hamsters of a β-propiolactone inactivated whole virus SARS-CoV vaccine. Viral Immunol. 2010; 23(5): 509-19.
[56]. Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019; 10: 594.
[57]. Hobernik D, Bros M. DNA vaccines—how far from clinical use? Int J Mol Sci. 2018; 19(11): 3605.
[58]. Le TT, Andreadakis Z, Kumar A, Roman RG, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020; 19(5): 305-6.
[59]. Corbett KS, Edwards D, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, et al. SARS-CoV-2 mRNA vaccine development enabled by prototype pathogen preparedness. BioRxiv. 2020.
[60]. Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020: 1-5.
[61]. Bouard D, Alazard‐Dany N, Cosset FL. Viral vectors: from virology to transgene expression. Br J Pharmacol. 2009; 157(2): 153-65.
[62]. Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines. 2014; 2(3): 624-41.
[63]. Zhu F-C, Li Y-H, Guan X-H, Hou L-H, Wang W-J, Li J-X, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. The Lancet. 2020.
[64]. Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatullin AI, Shcheblyakov DV, Dzharullaeva AS, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. The Lancet. 2020; 396(10255): 887-97.
[65]. Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet. 2020; 396(10249): 467-78.
[66]. Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020.
[67]. He Y, Zhou Y, Liu S, Kou Z, Li W, Farzan M, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem. Biophys. Res. Commun. 2004; 324(2): 773-81.
[68]. Zakhartchouk AN, Sharon C, Satkunarajah M, Auperin T, Viswanathan S, Mutwiri G, et al. Immunogenicity of a receptor-binding domain of SARS coronavirus spike protein in mice: implications for a subunit vaccine. Vaccine. 2007; 25(1): 136-43.
[69]. Tang J, Zhang N, Tao X, Zhao G, Guo Y, Tseng C-TK, et al. Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus. Hum Vaccin Immunother. 2015; 11(5): 1244-50.
[70]. Guo Y, Sun S, Wang K, Zhang S, Zhu W, Chen Z. Elicitation of immunity in mice after immunization with the S2 subunit of the severe acute respiratory syndrome coronavirus. DNA Cell Biol. 2005; 24(8): 510-15.
[71]. Nieto-Torres JL, DeDiego ML, Verdia-Baguena C, Jimenez-Guardeno JM, Regla-Nava JA, Fernandez-Delgado R, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 2014; 10(5).
[72]. Zhang J, Zeng H, Gu J, Li H, Zheng L, Zou Q. Progress and prospects on vaccine development against SARS-CoV-2. Vaccines. 2020; 8(2): 153.
[73]. Xiang Z, He Y. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology. BMC Bioinformatics. 2013; 14(4): 2.
[74]. Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011; 174(1): 11-22.
[75]. Pang H, Liu Y, Han X, Xu Y, Jiang F, Wu D, et al. Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: implications for the design of an effective protein-based vaccine. J Gen Virol. 2004; 85(10): 3109-13.
[76]. Jafari D, Dehghan NF, Honari H, Hoseini R, Jafari R. Bioinformatic analysis of different fusions of ipaD, PA20 and CTxB antigens: a preliminary analysis for vaccine design. 2016.
[77]. Kumar A, Sharma BP. In silico study to predict and characterize of SARS CoV 2 surface glycoprotein. Vaccine Res. 2020; 7(1): 10-6.
[78]. Singh H, Jakhar R, Sehrawat N. Designing spike protein (S-Protein) based multi-epitope peptide vaccine against SARS COVID-19 by immunoinformatics. Heliyon. 2020; 6(11): 5528.
[79]. Bhatnager R, Bhasin M, Arora J, Dang AS. Epitope based peptide vaccine against SARS-COV2: an immune-informatics approach. J Biomol Struct Dyn. 2020: 1-16.
[80]. Normalina I, Indrasari S, Nidom RV, Kusala MK, Alamudi MY, Santoso KP, et al. Characterization of the spike glycoprotein and construction of an epitope-based vaccine candidate against Indonesian SARS-CoV-2: In silico study. Sys Rev Pharm. 2020; 11(7): 404-13.
[81]. Enayatkhani M, Hasaniazad M, Faezi S, Guklani H, Davoodian P, Ahmadi N, et al. Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: an in silico study. J Biomol Struct Dyn. 2020: 1-16.