One pot, green synthesis and biological evaluation of some isatin-based thiocarbohydrazones derivatives

Seyyed Mohammad Shahcheragh 1,2, Azizollah Habibi 1, Masoomeh Shirzad 2, Yekta Farahani 2, Soroush Sardari 2,*

1Faculty of Chemistry, Kharazmi University; Tehran, Iran; 2Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran; Tehran, Iran

*Corresponding author: Soroush Sardari, Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran. email: ssardari@hotmail.com DOI: 10.22034/HBB.2023.07

Received: January 8, 2023; Accepted: February 12, 2023

ABSTRACT
In the present study, a one-pot, green and three-component route for synthesis of Thiocarbohydrazone (TCS) derivatives is described. This reaction was performed in choline chloride/urea (1:2) as Deep Eutectic Solvent (DES). The structures were characterized by FTIR, 1H NMR, 13C NMR spectra and elemental analysis. The derivatives were evaluated for their anti-mycobacterial activity against Mycobacterium bovis BCG, and the results revealed that among the synthesized compounds (1a-1h, 2a-2h, 3a-3h), 3b, 3c and 1b exhibited the highest activity with MIC value of 7.81 and 11.71 µg/mL. Additionally, the target compounds were evaluated for their anti-microbial activity against E.coli and Candida Albicans and the result indicated that in contrast to the low antifungal activity, the produced derivatives with electron-withdrawing substitution at the ortho, meta and para positions of benzyl ring includes 1d, 2b and 3d-3g demonstrated remarkable anti-micobacterial activities.

Keywords: Thiocarbohydrazone, deep eutectic solvent, one pot and three-component condensation reaction

INTRODUCTION
The most common method for the synthesis of thiocarbohydrazone derivatives is condensation reaction of thiocarbohydrazide with carbonyl compounds such as aldehydes or ketones.
This reaction could be generated Schiff bases that widely have been used as an antifungal [1], anticancer [2] and anti-convulsant [3] agents. Also the wide variety of Thio-carbohydrazone (TCS) containing an appropriate structural framework were found to have antineoplastic [4], antibacterial [5], and antifungal [6] properties.

One of the most important thio-carbohydrazones is thiacetazone as an economical, anti-tubercular and bacteriostatic drug that has been widely used in combination with other antimycobacterial agents like isoniazid. [7] Bermudez and et al. Synthesized thio-carbohydrazones with different functional groups on the benzene ring, which had higher activity than thiacetazone [8] In addition, Kobarfard and et al. were succeeded in obtaining a new thio-semicarbazone that was both non-toxic and highly active against M. tuberculosis [9].

Another widely used heterocyclic in the synthesis of medicinally active Schiff bases is isatin. According to the reports, it had shown many biological properties such as anti-HIV [10], anti-bacterial [11], anti-

Chinnasamy and et al designed and synthesized new isatin-based Schiff bases and investigated their analgesic activity [15].

Volatile organic compounds such as benzene, toluene, xylene and formaldehyde usually were applied in the common organic synthesis reactions. The most common method for synthesis of thio-carbohydrazide derivatives is compounds such as aldehydes or ketones to yield an intermediate compound [16]. This intermediate compound could be generated Schiff bases that widely have been used in biological activities including antifungal, antibacterial and anti-inflammatory properties [17]. In the Schiff base structure, the C=N moiety is important for biological activity.

Minimum inhibitory concentration (MIC) values explain in vitro level resistance of specific bacterial strains, so lower MIC values indicate that less of the drug are required to inhibit growth of the organism such as Mycobacterium bovis BCG, E.coli and Candida Albicans. The obtained MIC values have impact on the choice of a therapeutic strategy [18,19,20].
A one pot synthesis is a strategy to improve efficiency of a chemical reaction that the reactants are subjected to the reaction in just one reactor to produce less waste. Condensation reaction is a type of one pot reaction. In organic chemistry, a reaction that two molecules are combined to form a molecule is known as condensation reaction. Ionic liquids can be used in one pot synthesis instead of organic solvents in green synthesis, so the ionic liquids can be dissolved organometallic compounds and can be reused in the organic reactions and mentioned as an environmentally friendly method.

In this article, according to the mentioned biological attractions, 24 different thiocarbohydrazone derivatives had been designed and synthesized using 3 isatin and 8 aldehyde derivatives and evaluated for their biological activity against Mycobacterium bovis BCG, E.coli and Candida Albicans. For this purpose a one-pot, green and three-component route had been used.

MATERIALS AND METHODS

The chemicals used in this work were purchased from Merck, and Sigma-Aldrich chemical companies. Melting points were measured using a capillary tube method by a Barnstead Electrothermal 9200 device. FTIR spectra were recorded using KBr disks on Perkin-Elmer Spectrum RXI FT-IR spectrophotometer. 1H-NMR and 13C-NMR spectra were measured in DMSO with TMS as an internal standard on a Bruker AMX spectrometer at 300 MHz.

General procedure for the preparation of thiocarbohydrazones (1a-1h), (2a-2h), (3a-3h)

At the first step, an aldehyde (1 mmol) in the 30 min was added to a stirred solution of thiocarbohydrazide (1 mmol) in DES (15 mL). The stirring of the solution was continued at room temperature for 2 h. Then, isatin (1 mmol) was added to this solution and the reaction mixture was refluxed at 80 °C. After the completion of the reaction, ice water was added and the precipitate was collected and recrystallized by ethyl acetate.

RESULTS

The structures of the synthesized thiocarbohydrazone compounds were confirmed using FTIR, 1H-NMR and 13C-NMR spectroscopies are presented below:

(1E,5E)-1-(3-nitrobenzylidene)-5-(2-oxoindolin-3-ylidene) thiocarbonohydrazid (1a)

IR (KBr): 3348 (N–H, Amides), 3107 (C–H, Ar), 1690 (C=O), 1620 (C=N), 1523 (N=O), 1156 (C=S) cm$^{-1}$.

Sardari et al.

Isatin-based thiocarbohydrazones
Sardari et al.

\[\text{1}^\text{H} \text{NMR (300 MHz, DMSO-d}_6): \text{14.61 (s, 1H)}, \text{12.69 (s, 1H), 11.37 (s, 1H), 8.16 (s, 1H), 8.01 (s, 1H), 7.80 (d, \text{J} = 6.6 \text{ Hz}, 1H), 7.56 (d, \text{J} = 7.2 \text{ Hz, 1H}), 7.45-7.50 (m, 2H), 7.37 (t, \text{J} = 7.5 \text{ Hz, 1H}), 7.10 (t, \text{J} = 7.8 \text{ Hz, 1H}).} \]

\[\text{1}^\text{C} \text{NMR (75 MHz, DMSO): 175.58, 163.01, 143.48, 142.44, 138.62, 136.08, 134.32, 132.09, 131.28, 130.76, 126.98, 126.84, 123.19, 121.49, 120.21, 111.59.} \]

Anal. calcd. For C_{16}H_{12}ClNOS (357.82): C, 53.71; H, 3.38; N, 19.57; Found: C, 53.75; H, 3.11; N, 19.68.

\[\text{(1E,5E)-1-(3-bromobenzylidene)-5-(2-oxoindolin-3-ylidene) thiocarbonohydrazide (1c)} \]

IR (KBr): 3105 (C–H, Ar), 1687 (C=O), 1621 (C=N), 1164 (C=S), 545 (C-Br) cm\(^{-1}\).

\[\text{1}^\text{H} \text{NMR (300 MHz, DMSO-d}_6): \text{14.59 (s, 1H)}, \text{12.68 (s, 1H), 11.37 (s, 1H), 8.13 (d, \text{J} = 7.68 \text{ Hz, 2H}), 7.85 (d, \text{J} = 7.62 \text{ Hz, 1H}), 7.64 (d, \text{J} = 7.8 \text{ Hz, 1H}), 7.56 (d, \text{J} = 7.2 \text{ Hz, 1H}), 7.34-7.44 (m, 2H), 7.09 (t, \text{J} = 7.2 \text{ Hz, 1H}), 6.93 (d, \text{J} = 7.8 \text{ Hz, 1H}).} \]

\[\text{1}^\text{C} \text{NMR (75 MHz, DMSO): 175.34, 162.72, 142.27, 139.27, 138.26, 135.64, 134.58, 131.53, 130.04, 129.65, 127.92, 127.74, 122.62, 120.90, 119.93, 111.17.} \]

Anal. calcd. For C_{16}H_{12}ClNOS (391.01): C, 48.99; H, 2.83; N, 17.85; Found: C, 48.83; H, 2.83; N, 17.49.

\[\text{Isatin-based thiocarbonohydrzones} \]

\[\text{1}^\text{H} \text{NMR (300 MHz, DMSO-d}_6): \text{14.61 (s, 1H), 12.77 (s, 1H), 11.33 (s, 1H), 8.56 (s, 1H), 8.26 (d, \text{J} = 8.4 \text{ Hz, 1H}), 7.75 (d, \text{J} = 2.1 \text{ Hz, 1H}), 7.50-7.58 (m, 2H), 7.37 (t, \text{J} = 7.8 \text{ Hz, 1H}), 7.10 (t, \text{J} = 7.5 \text{ Hz, 1H}), 6.95 (d, \text{J} = 7.8 \text{ Hz, 1H}).} \]

\[\text{1}^\text{C} \text{NMR (75 MHz, DMSO): 175.57, 162.99, 142.43, 140.04, 138.76, 136.25, 135.08, 132.17, 130.33, 130.05, 128.37, 128.27, 123.26, 121.55, 120.17, 111.66.} \]

Anal. calcd. For C_{16}H_{12}BrNOS (400.99): C, 47.77; H, 3.01; N, 17.41; Found: C, 47.44; H, 3.04; N, 17.73.

\[\text{(1E,5E)-1-(2, 4-dichlorobenzylidene)-5-(2-oxoindolin-3-ylidene) thiocarbonohydrazide (1d)} \]

IR (KBr): 3154 (C–H, Ar), 1708 (C=O), 1618 (C=N), 1159 (C=S), 792 (C-Cl) cm\(^{-1}\).

\[\text{1}^\text{H} \text{NMR (300 MHz, DMSO-d}_6): \text{14.61 (s, 1H), 12.77 (s, 1H), 11.33 (s, 1H), 8.56 (s, 1H), 8.26 (d, \text{J} = 8.4 \text{ Hz, 1H}), 7.75 (d, \text{J} = 2.1 \text{ Hz, 1H}), 7.50-7.58 (m, 2H), 7.37 (t, \text{J} = 7.8 \text{ Hz, 1H}), 7.10 (t, \text{J} = 7.5 \text{ Hz, 1H}), 6.95 (d, \text{J} = 7.8 \text{ Hz, 1H}).} \]

\[\text{1}^\text{C} \text{NMR (75 MHz, DMSO): 175.57, 162.99, 142.43, 140.04, 138.76, 136.25, 135.08, 132.17, 130.33, 130.05, 128.37, 128.27, 123.26, 121.55, 120.17, 111.66.} \]

Anal. calcd. For C_{16}H_{12}ClNOS (391.01): C, 48.99; H, 2.83; N, 17.85; Found: C, 48.86; H, 2.74; N, 17.76.

\[\text{(1E,5E)-1-(2, 5-dichlorobenzylidene)-5-(2-oxoindolin-3-ylidene) thiocarbonohydrazide (1e)} \]

IR (KBr): 3180 (C–H, Ar), 1666 (C=O), 1621 (C=N), 1146 (C=S), 777 (C-Cl) cm\(^{-1}\).

\[\text{1}^\text{H} \text{NMR (300 MHz, DMSO-d}_6): \text{14.60 (s, 1H), 12.76 (s, 1H), 11.33 (s, 1H), 8.55 (s, 1H), 8.25 (d, \text{J} = 8.7 \text{ Hz, 1H}), 7.73 (d, \text{J} = 1.8 \text{ Hz, 1H}), 7.49-7.57 (m, 2H), 7.37 (t, \text{J} = 7.8 \text{ Hz, 1H}), 7.09 (t, \text{J} = 7.5 \text{ Hz, 1H}), 6.94 (d, \text{J} = 7.8 \text{ Hz, 1H}).} \]

\[\text{1}^\text{C} \text{NMR (75 MHz, DMSO-d}_6): \text{175.34, 162.72, 142.27, 139.27, 138.26, 135.64, 134.58, 131.53, 130.04, 129.65, 127.92, 127.74, 122.62, 120.90, 119.93, 111.17.} \]

Anal. calcd. For C_{16}H_{12}ClNOS (391.01): C, 48.99; H, 2.83; N, 17.85; Found: C, 48.83; H, 2.83; N, 17.49.
Sardari et al.

(1E,5E)-1-(2, 6-dichlorobenzylidene)-5-(2-oxoindolin-3-ylidene) thiocarbonohydrazide (1f)

IR (KBr): 3150 (C–H, Ar), 1708 (C=O), 1618 (C=N), 1155 (C=S), 792 (C-Cl) cm⁻¹.

¹H NMR (300 MHz, DMSO-d₆): 14.18 (s, 1H), 12.75 (s, 1H), 11.12 (s, 1H), 8.49 (s, 1H), 7.53-7.58 (m, 3H), 7.42-7.48 (m, 1H), 7.36 (t, J = 7.8 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 7.5 Hz, 1H).

¹³C NMR (75 MHz, DMSO): 176.02, 162.14, 142.49, 140.48, 138.07, 136.20, 134.30, 131.58, 129.33, 129.15, 127.60, 122.54, 120.91, 120.00, 119.10, 111.11.

Anal. calcd. For C₁₅H₁₁Cl₄N₅O₂S (391.01): C, 48.99; H, 2.83; N, 17.85; Found: C, 49.16; H, 2.73; N, 17.75.

(1E,5E)-1-(4-chloro-3-nitrobenzylidene)-5-(2-oxoindolin-3-ylidene) thiocarbonohydrazide (1g)

IR (KBr): 3410 (N–H, Amides), 3101 (C–H, Ar), 1696 (C=O), 1621 (C=N), 1529 (N=O), 1152 (C=S) cm⁻¹.

¹H NMR (300 MHz, DMSO-d₆): 14.62 (s, 1H), 12.61 (s, 1H), 11.34 (s, 1H), 8.50 (s, 1H), 8.21 (s, 1H), 8.15 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 7.2 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 7.8 Hz, 1H).

¹³C NMR (75 MHz, DMSO-d₆): 175.49, 162.62, 148.17, 142.30, 140.74, 138.35, 134.43, 132.18, 131.65, 131.51, 125.97, 123.63, 122.60, 120.88, 119.92, 111.15.

Anal. calcd. For C₁₆H₁₁Cl₅N₅OS (402.03): C, 47.71; H, 2.75; N, 20.86; Found: C, 47.64; H, 2.61; N, 20.75.

(1E,5E)-1-(3-methoxybenzylidene)-5-(2-oxoindolin-3-ylidene) thiocarbonohydrazide (1h)

IR (KBr): 3325 (N–H, Amides), 3120 (C–H, Ar), 1695 (C=O), 1623 (C=N), 1166 (C=S) cm⁻¹.

Isatin-based thiocarbonohydrazone

¹H NMR (300 MHz, DMSO-d₆): 14.63 (s, 1H), 12.61 (s, 1H), 11.30 (s, 1H), 8.15 (s, 1H), 7.55-7.58 (m, 2H), 7.35-7.37 (m, 3H), 6.93 – 7.10 (m, 3H), 3.86 (s, 3H).

¹³C NMR (75 MHz, DMSO-d₆): 175.31, 162.70, 159.68, 144.10, 142.21, 137.89, 135.00, 131.40, 129.98, 122.57, 121.13, 120.82, 120.05, 117.36, 111.11, 110.62, 55.32.

Anal. calcd. For C₁₇H₁₂N₂O₃S (353.4): C, 57.78; H, 4.28; N, 19.82; Found: C, 57.63; H, 4.13; N, 19.63.

(1E,5E)-1-(3-nitrobenzylidene)-5-(5-nitro-2-oxoindolin-3-ylidene) thiocarbonohydrazide (2a)

IR (KBr): 3361 (N–H, Amides), 3121 (C–H, Ar), 1710 (C=O), 1625(C=N), 1523(N=O), 1159 (C=S) cm⁻¹.

¹H NMR (300 MHz, DMSO-d₆): 14.42 (s, 1H), 12.85 (s, 1H), 11.91 (s, 1H), 8.64 (s, 1H), 8.23-8.29 (m, 5H), 7.32 (t, J = 7.8 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H).

¹³C NMR (75 MHz, DMSO): 175.11, 162.08, 148.44, 146.34, 142.64, 141.55, 135.45, 133.28, 132.85, 131.82, 127.56, 126.36, 123.83, 121.55, 114.24, 111.31.

Anal. calcd. For C₁₆H₁₁N₃O₃S (413.37): C, 46.49; H, 2.68; N, 23.72; Found: C, 46.37; H, 2.58; N, 23.63.

(1E,5E)-1-(3-chlorobenzylidene)-5-(5-nitro-2-oxoindolin-3-ylidene) thiocarbonohydrazide (2b)

IR (KBr): 3109 (C–H, Ar), 1711 (C=O), 1624 (C=N), 1521 (N=O), 1157 (C=S), 789 (C-Cl) cm⁻¹.

¹H NMR (300 MHz, DMSO-d₆): 14.38 (s, 1H), 12.81 (s, 1H), 11.96 (s, 1H), 8.14-8.24 (m, 3H), 7.96 (s, 1H), 7.76 (d, J = 6.3 Hz, 1H), 7.43-7.47 (m, 2H), 7.08 (d, J = 8.7 Hz, 1H).

¹³C NMR (75 MHz, DMSO): 175.27, 163.12, 147.28, 143.11, 142.65, 136.21, 135.66, 133.90, 130.75, 130.31, 127.12, 126.67, 126.49, 120.80, 115.50, 111.33.
Sardari et al.

Anal. calcd. For C_{15}H_{12}ClN_6O_4S (402.81): C, 47.71; H, 2.75; N, 20.86; Found: C, 47.72; H, 2.85; N, 20.68.

(1E,5E)-1-(3-bromobenzylidene)-5-(5-nitro-2-oxoindolin-3-ylidine) thiocarbonohydrazide (2e)

IR (KBr): 3126 (C=H, Ar), 1708 (C=O), 1624 (C=N), 1503 (N=O), 1161 (C=S), 549 (C-Br) cm⁻¹.

¹H NMR (300 MHz, DMSO-d₆): 14.39 (s, 1H), 12.83 (s, 1H), 11.97 (s, 1H), 8.09 - 8.26 (m, 4H), 7.82 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 8 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.08 (d, J = 8.7 Hz, 1H).

¹³C NMR (75 MHz, DMSO-d₆): 175.20, 163.12, 147.30, 143.15, 142.67, 136.32, 135.85, 133.21, 130.99, 129.48, 127.13, 126.92, 122.40, 120.83, 115.48, 111.33.

Analytical calcd. For C_{16}H_{12}BrN_6O_4S (447.27): C, 42.97; H, 2.48; N, 18.79; Found: C, 42.72; H, 2.53; N, 18.67.

(1E,5E)-1-(2,4-dichlorobenzylidene)-5-(5-nitro-2-oxoindolin-3-ylidine) thiocarbonohydrazide (2d)

IR (KBr): 3460 (N–H, Amides), 3130 (C–H, Ar), 1700 (C=O), 1626 (C=N), 1524 (N=O), 1163 (C=S), 793 (C-Cl) cm⁻¹.

¹H NMR (300 MHz, DMSO-d₆): 14.41 (s, 1H), 12.91 (s, 1H), 11.93 (s, 1H), 8.54 (s, 1H), 8.19 - 8.28 (m, 3H), 7.72 (dd, J = 6.8 Hz, 1.9 Hz, 1H), 7.49 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H).

¹³C NMR (75 MHz, DMSO-d₆): 175.24, 163.09, 143.55, 142.70, 139.72, 138.69, 135.13, 134.69, 133.97, 131.67, 129.38, 129.68, 127.91, 120.76, 115.51, 111.33.

Analytical calcd. For C_{16}H_{12}Cl_2N_6O_4S (437.26): C, 43.95; H, 2.31; N, 19.22; Found: C, 43.81; H, 2.41; N, 19.35.

(1E,5E)-1-(2,5-dichlorobenzylidene)-5-(5-nitro-2-oxoindolin-3-ylidine) thiocarbonohydrazide (2e)

IR (KBr): 3459 (N–H, Amides), 3158 (C–H, Ar), 1701 (C=O), 1624 (C=N), 1525 (N=O), 1159 (C=S), 749 (C-Cl) cm⁻¹.

¹H NMR (300 MHz, DMSO-d₆): 14.33 (s, 1H), 12.85 (s, 1H), 11.99 (s, 1H), 8.47 (s, 1H), 8.14 - 8.23 (m, 3H), 7.67 (m, 1H), 7.42 (d, J = 8 Hz, 1H), 7.05 (d, J = 8.7 Hz, 1H).

¹³C NMR (75 MHz, DMSO): 175.21, 163.11, 147.21, 143.47, 142.71, 139.73, 134.71, 131.32, 129.74, 129.37, 127.91, 127.70, 127.23, 120.72, 115.50, 111.46.

Analytical calcd. For C_{16}H_{12}Cl_2N_6O_4S (437.26): C, 43.95; H, 2.31; N, 19.22; Found: C, 43.67; H, 2.21; N, 19.14.

(1E,5E)-1-(2,6-dichlorobenzylidene)-5-(5-nitro-2-oxoindolin-3-ylidine) thiocarbonohydrazide (2f)

IR (KBr): 3372 (N–H, Amides), 3133 (C–H, Ar), 1711 (C=O), 1627 (C=N), 1506 (N=O), 1158 (C=S), 783 (C-Cl) cm⁻¹.

¹H NMR (300 MHz, DMSO-d₆): 14.01 (s, 1H), 12.93 (s, 1H), 11.75 (s, 1H), 8.52 (s, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.22 (s, 1H), 7.58 (m, 2H), 7.41-7.49 (m, 1H), 7.11 (d, J = 8.7 Hz, 1H).

¹³C NMR (75 MHz, DMSO): 175.72, 163.17, 147.37, 142.65, 141.05, 134.35, 134.07, 131.67, 131.30, 130.52, 129.37, 129.02, 127.28, 120.84, 115.56, 111.33.

Analytical calcd. For C_{16}H_{12}Cl_2N_6O_4S (437.26): C, 43.95; H, 2.31; N, 19.22; Found: C, 43.81; H, 2.29; N, 19.10.

(1E,5E)-1-(4-chloro-3-nitrobenzylidene)-5-(5-nitro-2-oxoindolin-3-ylidine) thiocarbonohydrazide (2g)

IR (KBr): 3481 (N–H, Amides), 3114 (C–H, Ar), 1724 (C=O), 1621 (C=N), 1510 (N=O), 1166 (C=S), 791 (C-Cl) cm⁻¹.

¹H NMR (300 MHz, DMSO-d₆): 14.43 (s, 1H), 12.99 (s, 1H), 11.98 (s, 1H), 8.50 (s, 1H), 8.19-8.27 (m, 1H), 8.19-8.21 (m, 3H), 8.13 (dd, J = 8.3, 1.5 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H).
Sardari et al.

13C NMR (75 MHz, DMSO-d6): 175.23, 163.08, 148.16, 147.34, 142.71, 141.22, 136.55, 134.27, 132.25, 131.83, 127.22, 126.17, 123.60, 120.74, 115.54, 111.41.

Anal. calcd. For C$_{16}$H$_{10}$ClN$_2$O$_2$S (447.81): C, 42.91; H, 2.25; N, 21.89; Found: C, 42.78; H, 2.17; N, 21.72.

(1E,5E)-1-(3-methoxybenzylidene)-5-(5-nitro-2-oxoindolin-3-ylidene) thiocarbonohydrazide (2h)

IR (KBr): 3197 (C=N), 1498 (N=O), 1162 (C=S) cm$^{-1}$.

1H NMR (300 MHz, DMSO-d$_6$): 14.46 (s, 1H), 12.79 (s, 1H), 11.92 (s, 1H), 8.21–8.28 (m, 2H), 8.15 (s, 1H), 7.57 (s, 1H), 7.34–7.39 (m, 2H), 7.13 (d, J = 7.8 Hz, 1H), 7.00–7.04 (m, 1H), 3.86 (s, 3H).

13C NMR (75 MHz, DMSO): 175.16, 163.09, 159.67, 147.25, 144.57, 142.68, 136.08, 134.83, 129.99, 127.09, 121.29, 120.88, 117.56, 115.46, 111.35, 108.46, 55.30.

Anal. calcd. For C$_{17}$H$_{12}$N$_2$O$_2$S (398.4): C, 51.25; H, 3.54; N, 21.09; Found: C, 51.37; H, 3.46; N, 20.96.

(1E,5E)-1-(3-nitrobenzylidene)-5-(5-bromo-2-oxoindolin-3-ylidene) thiocarbonohydrazide (3a)

IR (KBr): 3410 (N=O), 1705 (C=O), 1617 (C=N), 1163 (C=S) cm$^{-1}$.

1H NMR (300 MHz, DMSO-d$_6$): 14.56 (s, 1H), 12.76 (s, 1H), 11.48 (s, 1H), 8.12 (d, J = 9.9 Hz, 2H), 7.82–7.85 (m, 1H), 7.38–7.64 (m, 4H), 6.88 (d, J = 8.1 Hz, 1H).

13C NMR (75 MHz, DMSO): 175.34, 162.40, 142.91, 141.28, 136.93, 135.75, 133.91, 133.54, 130.76, 130.26, 129.77, 126.83, 122.94, 122.18, 114.23, 113.08.

Anal. calcd. For C$_{18}$H$_{11}$BrClN$_2$O$_2$S (481.16): C, 39.94; H, 2.30; N, 14.56; Found: C, 39.68; H, 2.23; N, 14.35.

(1E,5E)-1-(2,4-dichlorobenzylidene)-5-(5-bromo-2-oxoindolin-3-ylidene) thiocarbonohydrazide (3d)

IR (KBr): 3131 (C=O), 1701 (C=O), 1617 (C=N), 1163 (C=S), 790 (C=Cl), 534 (C-Br) cm$^{-1}$.

1H NMR (300 MHz, DMSO-d$_6$): 14.52 (s, 1H), 12.76 (s, 1H), 11.48 (s, 1H), 8.77–8.15 (m, 4H), 7.48–7.59 (m, 3H), 6.88 (s, 1H).

Isatin-based thiocarbonohydrazones

1H NMR (300 MHz, DMSO-d$_6$): 14.52 (s, 1H), 12.76 (s, 1H), 11.48 (s, 1H), 8.77–8.15 (m, 4H), 7.48–7.59 (m, 3H), 6.88 (s, 1H).
Sardari et al.

(d, J= 6.3 Hz, 1H), 7.49-7.69 (m, 4H), 6.89 (s, 1H), 7.21-7.35 (m, 2H).

13C NMR (75 MHz, DMSO): 175.23, 162.35, 141.27, 139.52, 137.05, 135.69, 134.62, 133.59, 129.96, 129.65, 127.92, 127.77, 122.95, 122.07, 114.26, 113.11.

Anal. calcd. For C$_{10}$H$_{10}$BrCl$_2$N$_5$OS (471.16): C: 40.79; H: 2.14; N: 14.86; Found: C: 40.83; H: 2.03; N: 14.77.

(1E,5E)-1-(2,5-dichlorobenzylidene)-5-(5-bromo-2-oxoindolin-3-ylidene)
thiocarbonohydrazide (3e)

IR (KBr): 3150 (C=O, Ar), 1708 (C=O, Ar), 1699 (C=O), 1617 (C=N), 1529 (N=O), 1172 (C=S), 789 (C=Cl), 527 (C-Br) cm$^{-1}$.

1H NMR (300 MHz, DMSO-d$_6$): 14.51 (s, 1H), 12.81 (s, 1H), 11.41 (s, 1H), 8.55 (s, 1H), 8.22 (d, J= 8.1 Hz, 1H), 7.48-7.54 (m, 2H), 7.60-7.72 (m, 2H), 6.90 (d, J= 8.1 Hz, 1H).

13C NMR (75 MHz, DMSO): 175.19, 162.20, 141.10, 139.54, 137.04, 135.72, 134.63, 133.61, 129.97, 129.64, 127.91, 127.76, 122.94, 122.07, 114.27, 113.11.

Anal. calcd. For C$_{10}$H$_{10}$BrCl$_2$N$_5$OS (471.16): C: 40.79; H: 2.14; N: 14.86; Found: C: 40.71; H: 2.13; N: 14.74.

Isatin-based thiocarbohydrazones

Anal. calcd. For C$_{10}$H$_{10}$BrCl$_2$N$_5$OS (471.16): C: 40.79; H: 2.14; N: 14.86; Found: C: 40.61; H: 2.04; N: 14.75.

(1E,5E)-1-(4-chloro-3-nitrobenzylidene)-5-(5-bromo-2-oxoindolin-3-ylidene)

thiocarbonohydrazide (3g)

IR (KBr): 3420 (N–H, Amides), 3119 (C–H, Ar), 1693 (C=O), 1617 (C=N), 1529 (N=O), 1172 (C=S), 789 (C=Cl), 527 (C-Br) cm$^{-1}$.

1H NMR (300 MHz, DMSO-d$_6$): 14.48 (s, 1H), 12.87 (s, 1H), 11.45 (s, 1H), 8.44 (s, 1H), 8.16 (s, 1H), 8.10 (d, J= 7.5 Hz, 1H), 7.78 (d, J= 7.5 Hz, 1H), 7.54 (s, 1H), 7.47 (d, J= 7.5 Hz, 1H), 6.84 (d, J= 7.5 Hz, 1H).

13C NMR (75 MHz, DMSO-d$_6$): 175.37 , 162.28 , 148.04 , 141.24 , 140.79 , 137.04 , 134.32 , 133.50 , 132.13 , 131.62 , 126.07 , 123.68 , 122.89 , 122.05 , 114.22 , 113.07.

Anal. calcd. For C$_{10}$H$_{10}$BrCl$_2$N$_5$OS (481.71) C: 39.89; H: 2.09; N: 17.45; Found: C: 40.02; H: 1.99; N: 17.34.

(1E,5E)-1-(3-methoxybenzylidene)-5-(5-bromo-2-oxoindolin-3-ylidene)

thiocarbonohydrazide (3h)

IR (KBr): 3124 (C–H, Ar), 1699 (C=O), 1618 (C=N), 1160 (C=S), 536 (C-Br) cm$^{-1}$.

1H NMR (300 MHz, DMSO-d$_6$): 14.54 (s, 1H), 12.68 (s, 1H), 11.39 (s, 1H), 8.13 (s, 1H), 7.33-7.57 (m, 5H), 6.87-7.00 (m, 2H), 3.84 (s, 3H).

13C NMR (75 MHz, DMSO): 175.21, 162.33, 159.64, 144.27, 141.18, 136.64, 134.91, 133.41, 129.99, 122.84, 122.23, 121.19, 117.42, 114.18, 113.05, 110.50, 55.29.

Anal. calcd. For C$_{17}$H$_{12}$BrN$_5$O$_5$S (432.29) C: 47.23; H: 3.26; N: 16.20; Found: C: 47.31; H: 3.16; N: 16.13.

The MIC values of the synthesized thiocarbohydrazone compounds are shown in Table 1.

HBB. 6(4): 81-97
Table 1. The MIC values of the synthesized thiocarbohydrazone compounds

<table>
<thead>
<tr>
<th>Entry</th>
<th>Code</th>
<th>Product</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>Mp (°C)</th>
<th>MIC (µg/ml) BCG (48 h)</th>
<th>MIC (µg/ml) E.Coli (10 h/16h)</th>
<th>MIC (µg/ml) C. albicans (48 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td></td>
<td>4</td>
<td>90</td>
<td>227-229</td>
<td>31.25</td>
<td>250</td>
<td>>1000</td>
</tr>
<tr>
<td>2</td>
<td>1b</td>
<td></td>
<td>4</td>
<td>85</td>
<td>230-233</td>
<td>7.81</td>
<td>125</td>
<td>750</td>
</tr>
<tr>
<td>3</td>
<td>1c</td>
<td></td>
<td>5</td>
<td>78</td>
<td>253-256</td>
<td>15.625</td>
<td>125</td>
<td>1000</td>
</tr>
<tr>
<td>4</td>
<td>1d</td>
<td></td>
<td>4</td>
<td>85</td>
<td>266-268</td>
<td>31.25</td>
<td>62.5</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>1e</td>
<td></td>
<td>3</td>
<td>80</td>
<td>256-258</td>
<td>15.625</td>
<td>125</td>
<td>500</td>
</tr>
<tr>
<td>6</td>
<td>1f</td>
<td></td>
<td>3</td>
<td>90</td>
<td>252-254</td>
<td>31.25</td>
<td>125</td>
<td>1000</td>
</tr>
<tr>
<td>7</td>
<td>1g</td>
<td></td>
<td>4</td>
<td>90</td>
<td>224-226</td>
<td>31.25</td>
<td>125</td>
<td>1000</td>
</tr>
<tr>
<td>Entry</td>
<td>Code</td>
<td>Product</td>
<td>Time (h)</td>
<td>Yield (%)</td>
<td>Mp (°C)</td>
<td>MIC (µg/ml) BCG (48 h)</td>
<td>MIC (µg/ml) E.Coli (10 h/16h)</td>
<td>MIC (µg/ml) C. albicans (48 h)</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td>---------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>8</td>
<td>1h</td>
<td></td>
<td>5</td>
<td>80</td>
<td>232-234</td>
<td>15.625</td>
<td>250</td>
<td>750</td>
</tr>
<tr>
<td>9</td>
<td>2a</td>
<td></td>
<td>3</td>
<td>85</td>
<td>227-229</td>
<td>23.43</td>
<td>250</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>2b</td>
<td></td>
<td>3</td>
<td>90</td>
<td>222-225</td>
<td>15.625</td>
<td>62.5</td>
<td>>1000</td>
</tr>
<tr>
<td>11</td>
<td>2c</td>
<td></td>
<td>4</td>
<td>76</td>
<td>219-221</td>
<td>23.43</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>12</td>
<td>2d</td>
<td></td>
<td>5</td>
<td>87</td>
<td>212-214</td>
<td>46.87</td>
<td>250</td>
<td>750</td>
</tr>
<tr>
<td>13</td>
<td>2e</td>
<td></td>
<td>5</td>
<td>76</td>
<td>249-251</td>
<td>31.25</td>
<td>250</td>
<td>1000</td>
</tr>
<tr>
<td>14</td>
<td>2f</td>
<td></td>
<td>3</td>
<td>85</td>
<td>239-242</td>
<td>15.625</td>
<td>125</td>
<td>750</td>
</tr>
<tr>
<td>Entry</td>
<td>Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>Mp (°C)</th>
<th>MIC (µg/ml) BCG (48 h)</th>
<th>MIC (µg/ml) E.Coli (10 h/16h)</th>
<th>MIC (µg/ml) C. albicans (48 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2g 4</td>
<td>4</td>
<td>90</td>
<td>237-240</td>
<td>62.5</td>
<td>250</td>
<td>750</td>
</tr>
<tr>
<td>2h 3</td>
<td>3</td>
<td>75</td>
<td>214-220</td>
<td>31.25</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>3a 4</td>
<td>4</td>
<td>82</td>
<td>234-236</td>
<td>31.25</td>
<td>125</td>
<td>750</td>
</tr>
<tr>
<td>3b 4</td>
<td>4</td>
<td>90</td>
<td>228-230</td>
<td>11.71</td>
<td>125</td>
<td>750</td>
</tr>
<tr>
<td>3c 5</td>
<td>5</td>
<td>85</td>
<td>222-225</td>
<td>11.71</td>
<td>250</td>
<td>>1000</td>
</tr>
<tr>
<td>3d 3</td>
<td>3</td>
<td>80</td>
<td>249-251</td>
<td>62.5</td>
<td>125</td>
<td>1000</td>
</tr>
<tr>
<td>3e 3</td>
<td>3</td>
<td>92</td>
<td>247-249</td>
<td>62.5</td>
<td>62.5</td>
<td>500</td>
</tr>
<tr>
<td>Entry</td>
<td>Code</td>
<td>Product</td>
<td>Time (h)</td>
<td>Yield (%)</td>
<td>Mp (°C)</td>
<td>MIC (µg/ml) BCG (48 h)</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>22</td>
<td>3f</td>
<td></td>
<td>4</td>
<td>90</td>
<td>250-252</td>
<td>15.625</td>
</tr>
<tr>
<td>23</td>
<td>3g</td>
<td></td>
<td>4</td>
<td>85</td>
<td>242-244</td>
<td>31.25</td>
</tr>
<tr>
<td>24</td>
<td>3h</td>
<td></td>
<td>4</td>
<td>80</td>
<td>241-243</td>
<td>31.25</td>
</tr>
<tr>
<td>25</td>
<td>4a</td>
<td></td>
<td>1</td>
<td>90</td>
<td>232-235</td>
<td>31.25</td>
</tr>
<tr>
<td>26</td>
<td>4b</td>
<td></td>
<td>1</td>
<td>85</td>
<td>210-213</td>
<td>31.25</td>
</tr>
<tr>
<td>27</td>
<td>4c</td>
<td></td>
<td>1</td>
<td>85</td>
<td>215-217</td>
<td>31.25</td>
</tr>
<tr>
<td>28</td>
<td>4d</td>
<td></td>
<td>1</td>
<td>90</td>
<td>224-227</td>
<td>62.5</td>
</tr>
<tr>
<td>29</td>
<td>4e</td>
<td></td>
<td>1</td>
<td>87</td>
<td>237-240</td>
<td>62.5</td>
</tr>
<tr>
<td>Entry</td>
<td>Code</td>
<td>Product</td>
<td>Time (h)</td>
<td>Yield (%)</td>
<td>Mp (°C)</td>
<td>MIC (µg/ml)</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BCG (48 h)</td>
<td>E.Coli (10 h/16 h)</td>
<td>C. albicans (48 h)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4f</td>
<td></td>
<td>1</td>
<td>80</td>
<td>210-214</td>
<td>7.81</td>
</tr>
<tr>
<td>31</td>
<td>4g</td>
<td></td>
<td>1</td>
<td>75</td>
<td>15.625</td>
<td>500/500</td>
</tr>
<tr>
<td>32</td>
<td>4h</td>
<td></td>
<td>1</td>
<td>82</td>
<td>198-200</td>
<td>11.71</td>
</tr>
<tr>
<td>33</td>
<td>4i</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>125</td>
</tr>
<tr>
<td>34</td>
<td>4j</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>125</td>
</tr>
<tr>
<td>35</td>
<td>4k</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>125</td>
</tr>
<tr>
<td>36</td>
<td>4l</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>31.25</td>
</tr>
<tr>
<td>37</td>
<td>5a</td>
<td>Amphotericin B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>38</td>
<td>5b</td>
<td>Fluconazole</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>39</td>
<td>5c</td>
<td>Ethambutol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.39</td>
</tr>
<tr>
<td>40</td>
<td>5d</td>
<td>Isoniazid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.39</td>
</tr>
<tr>
<td>41</td>
<td>5e</td>
<td>Streptomycin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.78/1.562</td>
</tr>
<tr>
<td>42</td>
<td>5f</td>
<td>DMSO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5% v/v</td>
</tr>
</tbody>
</table>
DISCUSSION

Thiocarbohydrazone derivatives are used to prepare heterocycles and their biological activities are important [21,22,23]. There are many reactions to synthesize thiocarbohydrazone derivatives with organic solvents, but in this study, we used Deep Eutectic Solvents (DES) that is similar to ionic liquids in the organic reactions. Due to low solubility of many drugs in the common solvents, we used DES to improve the dissolution behavior. The FTIR, H-NMR and 13C-NMR spectra of the synthesized thiocarbohydrazone derivatives were obtained and we found that the related condensation reaction with an aldehyde, was conducted to yield an intermediate compound. This intermediate compound could be generated Schiff base that widely have been used in biological activities [24,25,26]. The synthesis was carried out in one pot and three-component route including thiocarbohydrazide, isatin (2,3 benzopyrrole substituted with oxygen at carbon position 2 and 3) and aldehyde in the presence of DES to yield Schiff base of isatin. We found that the intensity of C=O stretching vibrations at 1700 cm$^{-1}$, related to the functional group of the thiocarbohydrazone derivative was weak and revealed the formation of Schiff base of isatin [27,28].

The MIC values of the synthesize thiocarbohydrazone derivatives showed noticeable activity against *Mycobacterium bovis BCG* and *E.coli*. The results of this study represented noticeable activity for synthesized thiocarbohydrazone derivatives 1a to 1h, 2a to 2h, 3a to 3h against *Mycobacterium bovis BCG* and for synthesized thiocarbohydrazone derivatives 1d, 2b, 3d to 3g against *E.coli*. These thiocarbohydrazone derivatives compounds with good electron-withdrawing substitution at the ortho, meta and para positions of benzyl ring demonstrated remarkable activities against *Mycobacterium bovis BCG* and *E.coli*.

CONCLUSION

We assessed the related antimicrobial activity of the synthesized thiocarbohydrazone compounds in this study. Also we found a relationship between the antimicrobial activity of these compounds and their structures. These compounds were evaluated for their anti-mycobacterial activity against *Mycobacterium bovis BCG*, and the obtained results showed that some of the synthesized compounds (1a-1h, 2a-2h, 3a-3h), 3b, 3c and 1b had the highest activity with MIC value of 7.81 and 11.71 µg/mL. Regarding to the
structure of the synthesized compounds with electron-withdrawing substitution at the ortho, meta and para positions of benzyl ring, some of them showed remarkable anti-micobacterial activities.

REFERENCES

[21]. Lee, Richard E., et al. Combinatorial lead optimization of [1, 2]-diamines based on ethambutol as potential antituberculosis

