Formulation development of Ezetimibe by using Soluplus and Co-Processed Acacia: tragacanth with Design Expert

Ch. Taraka Ramarao *, Jami. Ravali
Department of Pharmaceutical Technology, Sri Venkateswara College of Pharmacy, Etcherla, Srikakulam, India

*Corresponding author: Taraka Ramarao, Department of Pharmaceutical Technology, Sri Venkateswara College of Pharmacy, Etcherla, Srikakulam, India. E-mail: tarak.pharm60@gmail.com
DOI: 10.22034/HBB.2022.22

Received: July 9, 2022; Accepted: August 16, 2022

ABSTRACT

Ezetimibe is an antihyperlipidemic drug that lowers cholesterol levels. The purpose of this study was to compare different amounts of solid dispersions and formulations using various carriers in order to improve the dissolution. The Design Expert software was used to perform Analysis of Variance (ANOVA), 3D surface plots, counter plots, optimization, and desirability for a two-level factorial. Sun pharma laboratories limited market product, Ezentia, was compared to the optimised formulation, F6. We compared amount of released that was considerably increased using the solid dispersion method. The dissolving characteristics of the improved formulation, F6, and the market tablet were found to be similar, with f1 and f2 values of 11.71 and 99.89. When the experimental data matched the expected values, the model predictability and validity were shown.

Keywords: Design Expert, Ezetimibe, formulation

INTRODUCTION

The ezetimibe is a class II biopharmaceutical classification system medication with low solubility and high permeability. It is widely prescribed an antihyperlipidemic medication that aids in cholesterol reduction. The ezetimibe's recent research formulations reported that in-vitro and in-vivo evaluation of solid lipid nanoparticles [1], improve the solubility and dissolution of two fixed dose combination formulations [2]. The water-soluble carriers have showed promise as a technique of improving bioavailability for
most hydrophobic medicines by increasing dissolution rate observed [3]. The solubility of ezetimibe should be improved in the formulation since it melts quickly by sublimation technique were reported [4]. Solid Lipid Nanoparticles (SLNs) were prepared using a high-speed homogenization technique with Glyceryl monostearate as the lipid carrier and Poloxamer 188 as the surfactant designed [5]. The ezetimibe was prepared with a surfactant, Pluronic 188 in various ratios for dissolution studies were shown significant drug released behavior [6,7]. The prepared kneading method with soluplus with good release, crospovidone was added as a disintegrant as reported [8]. By using Hydrophilic Matrix Polymers, metformin HCL and ezetimibe are utilized to treat type 2 diabetes mellitus [9]. The Solid Self-Emulsifying Drug Delivery System (SSEDDS) for ezetimibe to improve solubility and dissolution rate, reducing absorption variability and possibly increasing oral bioavailability of the poorly soluble medication[10] The binary Ezetimibe (EZT) and Aspirin (ASA) pharmaceutical mixes to see if the presence of eutectic in this system affects EZT solubility shown beneficiary [11]. The researchers investigated ezetimibe-loaded solid Self-Nanoemulsifying Drug Delivery System (SNEDDS), Surface Modified Solid Dispersion (SMDSD), and solvent evaporated solid dispersion to determine the optimal drug delivery technology with the highest oral bioavailability [12]. The tween 80, poly ethylene glycol 400 (PEG 400), and Propylene Glycol (PG) were used as non-volatile solvents to make Ezetimibe liquisolid compacts to make Ezetimibe liquisolid compacts with acceptable flowability and compaction properties were reported [13]. The better control of dyslipidemia and hypertension, a gastro-bilayer floating matrix tablet with ezetimibe as an immediate layer and atenolol as a sustained release layer was developed [14], Co-crystals have shown to be a viable tool for altering the physicochemical properties of Active Pharmaceutical Ingredients (APIs) through the use of a co-former to improve solubility and dissolution rate. A new method for the fabrication of amorphous Nano-Solid Dispersions (NSDs) of ezetimibe combination as poorly water-soluble drugs improves the in vitro dissolution and in vivo performance of the poorly bioavailable drug Ezetimibe [15], increases its bioavailability [16], and improves the drug's performance in clinical trials [17]. The effect of HPC (hydroxypropyl

Ramarao et al.

Formulation of Ezetimibe by using Soluplus
Ramarao et al.

cellulose) and Tween 80 on the physicochemical properties and oral bioavailability of ezetimibe-loaded solid dispersions reported [18] and the effect of HPC (hydroxypropyl cellulose) and Tween 80 on the physicochemical properties and oral bioavailability of ezetimibe-loaded solid dispersions [19]. To optimize diverse formulas, the factorial design and optimization allegedly utilised 2^2 and 2^3 factorial designs was reported [20-32] and developed many formulations are reported. The various approach by using Soluplus as carrier and additive used weakly water-soluble indomethacin, hot-melt extrusion processing could change the interactions between medicines, altering the microstructure and characteristics of supra molecular gels, mixtures that included amphiphilic polymers Soluplus, develop a topical nano micellar formulation of the immune suppressant drug ever olimususing. The Soluplus®, a grafted copolymer of Polyvinyl Caprolactam-Polyvinyl Alcohol-Polyethylene Glycol(PVCL-PVA-PEG) for improved permeation through ocular epithelia with minimal or no irritation, resulting in increased ocular bioavailability reported [33-38]. The acacia and tragacanth are used to create a natural nanocarrier for the hydrophobic medication berberine that boosts its anti-inflammatory and antioxidant properties reported [39].

The goal of this study was to make ezetimibe solid dispersions by kneading, fusion method and solvent evaporation and to enhancement of dissolution rate. The using soluplus and hydrophilic compounds acacia and tragacanth co processed were combined with as per 2 level factorial designs. The investigation of tablet formulations with many parameters such as physical features, Fourier Transform Infrared spectroscopy (FTIR), and comparative examinations with commercially available tablets. The Design Expert software was used to do Analysis of Variance (ANOVA), 3D surface plots, counter plots, optimization, desirability, and optimization.

MATERIALS AND METHODS

Ezetimibe A gift sample by VKT company private limited, Srikakulam, Primellose a gift sample from IMDC Private limited, Mumbai, Soluplus, a gift sample from IMDC Private limited, Mumbai, Acacia purchased sample from Loba chemie pvt ltd Mumbai India, Gum tragacanth was purchased sample from Oxford Laboratory Mumbai, Talc purchased sample from Loba.
Solid dispersion by kneading method

In the kneading procedure, mannitol (3gm) was wetted with enough water (5ml) in a mortar to make a paste, then the medicine was slowly added to the dough to make the drug: Ezetimibe: Mannitol (1:3). Kneading was done manually for 30 mints, with a small amount of water added as needed to keep the paste from becoming too thick. For one hour, the mixture was dried in a “50-60 °C oven. After filtering through #20, the dried material was mashed with a mortar and pestle and designated as K1.

Solid dispersion by fusion method

“Mannitol was heated at 70 °C, for 15 min, molecular mobility of the drug and carrier molecules, which is greatest at the melting points of the two components of the dispersion, causes mixing that results in the formation of the molecular dispersion and the medication was dissolved in a molten polymer: Ezetimibe: Mannitol (1:2) in the fusion process (1:3). Cooled fast in an ice bath for up to 1 h by steady stirring for 10 to 15 min. This mixture was refrigerated for 12 h at 10-15 °C to solidify. The solid dispersion that resulted was scraped, crushed in the mortar, and sieved through 22#, resulting in F2. The material was preserved in a desiccator until they could continue their research.

Solid dispersion by solvent evaporation method

SD1 (1:0.5), SD2 (1:0.25), SD3 (1:0.75), SD4 (1:1), SD5 (1:2), accordingly, are the solid dispersion by Ezetimibe with soluplus comprising varied weight ratios. Place the drug in a mortar, add a few drops of dichloromethane, and thoroughly triturate. Later, the solvent was evaporated at room temperature, and the resulting residue was dried in a hot air oven for 1 hour at 60 °C. The product was then stored in desiccators overnight, ground in a mortar, and passed through sieve no. # 22 until further research.

Preparation of tablets

The Tablets were made utilizing a wet granulation process and a 2^3 factorial design, as indicated in Table.1. The appropriate quantity of medication(10mg), soluplus (X1) higher (+) (4 mg) lower (-) (2.5 mg), acacia: tragacanth (X2) higher (+) (6 %) lower (4 %), Primellose(X3) higher(+) (4.5 %) lower (-) (2.5 %), lactose(156 to 171.5 mg) were weighed accurately and mixed well, and water was
Formulation of Ezetimibe by using Soluplus

Hardness

Monsanto: Tablet Hardness Tester
Monsanto Type hardness tester to determine the tablet's hardness. The tablet is sandwiched between the movable and stationary jaws. The screw knob is used to move the moving jaw and provide pressure on the tablet. The moment at which the tablet begins to fail. Scale is used to keep track of it. The hardness is measured in kilograms per square meter.

Friability

Friability was assessed using the Lab India Tablet Friability Tester (FT 1020), which involved taking 20 tablets and weighing them before placing them in the friabilator. For 4 min, rotate the drum at 25 rpm per min or 100 rpm. During this process, the tablet is dropped into plastic from a height of 6 inches and is subjected to mechanical shocks. The final weight of the tablets and the percent friability after 4 minutes.

Disintegration time

The Tablet Distentegrating Tester from Lab India was used to determine the disintegration time (DT 1000). One tablet is inserted in each tube, and the basket rack is positioned in a 1-L beaker of water as medium at 37 °C, with the tablets remaining 2.5 cm below the surface of the liquid on
their upward movement and descending no closer than 2.5 cm from the bottom of the beaker. The basket assembly housing the tablets is moved up and down by a typical motor-driven system at a frequency of 28-32 cycles per minute. Note the time it takes for the tablet to completely vanish from the glass tube in this manner.

Dissolution study

The dissolution rate of ezetimibe from tablets was measured using a USP Type II (Paddle technique) dissolution test apparatus (LABINDIA, DS 8000) with phosphate buffer pH7.4 as the dissolution fluid at 37 °C and a stirrer speed of 50 rpm throughout the investigation. Each test sample (5ml) was taken at different intervals, such as 2.5 min, 5 min, 7.5 min, 10 min, 20 min, 30 min, 40 min, 50 min, and 60 min. A UV-Vis Spectrophotometer was used to evaluate the samples at 232 nm (ELICO Double beam SL 210). Each time a sample of dissolving fluid was extracted, it was replaced with new fluid. The dissolution of each produced tablet was replicated four times (n=4).

Comparative Studies

To compare dissolution profiles, a simple model-independent technique employs a difference factor (f₁) and a similarity factor (f₂). In the comparative studies of a new formulation, it is recommended to use the original brand of its medicine (in this case: Ezentia) with a new manufacturing date: 12/2020.

Drug Excipient Compatibility Studies

The Fourier Infrared Spectroscopy (FTIR) spectra of samples was obtained on a Bruker ALPHA II FTIR system (Bruker OPTIK GmbH, Rudolf-Plank-Str, Germany) by using KBr disc method 2mg sample in 300 mg of KBr scanning range was 4000-600 cm⁻¹ and the resolution was 1cm⁻¹.

Mean Dissolution Time (MDT)

The MDT is the first statistical point in the cumulative dissolution process that accurately estimates the drug release rate. It measures the time it takes for the medication to dissolve. It accurately describes the rate of medication release. Greater drug retarding capacity is indicated by a higher MDT value. MDT equation, where M is the amount of drug dissolved between times tᵢ and tᵢ₋₁, tᵢₘᵢₐₜ is the time at the midpoint between times tᵢ and tᵢ₋₁, and I is the number of dissolution samples.

\[
\text{MDT}_{\text{in vitro}} = \frac{\sum_{i=1}^{I} t_{\text{mid}} \Delta M}{\sum_{i=1}^{I} \Delta M}
\]
Ramarao et al.

Dissolution Efficiency (DE)

The area under dissolution curve up to certain time 't', expressed as certain time 't' percentage area of rectangle described by 100% dissolution in the same time. Most common way of assessment is to compare the time it takes for different quantities of active medication to be released into solution.

\[
DE = \frac{\int_0^t y \cdot dt}{y \cdot 100 \cdot t} \times 100
\]

Statistical Analysis

Data was analyzed using a first-order and zero-order kinetics model. Using design expert software (design expert version 13 stat-Ease Inc.com, USA), finding dissolution parameters such as PD5 (percent drug dissolved in 5 min), t50 (time required to dissolve 50% of the drug), and DE10 (dissolution efficiency) are subjected to ANOVA (Analysis of Variance), 3D Surface plots, Counter plots, Desirability, and other statistical parameters.

RESULTS

The three independent factors such as X1 concentration of Soluplus, X2 concentration of Acacia: Tragacanth and X3 concentration of Primellose were tested to 2 level factorial designs was shown in Table 1.

Formulation of Ezetimibe by using Soluplus

Dissolution behavior of different solid dispersions

The solid dispersion in eight proportions: K1 release 100% within 60 min, F1, F2 (40-60 min) and SD1, SD2, SD3, SD4, SD5 (40-60 min) were made and quantified according to the dissolution profile. Under phosphate buffer pH 6.8, pure drug release of more than 2 h and in vitro performance, Figure 2 depicts the situation.

Drug excipients compatibilities

The FTIR spectrums of pure drug and mixtures with various excipients shown in the Figure 1. The characteristic peaks at 1271 cm\(^{-1}\), 1220 cm\(^{-1}\), 1157 cm\(^{-1}\), 1118 cm\(^{-1}\), 1066 cm\(^{-1}\), 1013 cm\(^{-1}\) (Due to C-F Stretch) 3239 cm\(^{-1}\) (Due to O-H Stretch) 3239 cm\(^{-1}\) (Due to N-H Stretch) 900 cm\(^{-1}\), 851 cm\(^{-1}\), 830 cm\(^{-1}\) (Due to N-H Rocking) 1445 cm\(^{-1}\), 1271 cm\(^{-1}\), 1220 cm\(^{-1}\) (Due to O-H) 1715 cm\(^{-1}\), 1613 cm\(^{-1}\) (Due to C=O Stretch) 1613 cm\(^{-1}\), 1591 cm\(^{-1}\), 1509 cm\(^{-1}\), (Due to N-H Bending) confirming the drug structure.

Tablet properties

The data of tablet properties have been shown in a summarized comparative in Table 2. The hardness of all tablet formulations was found to be between 4 and 4.5 kg/cm\(^2\), with the highest hardness
in (F7), indicating an enhancement in hardness-related binding properties of ezetimibe tablets.

The friability test is important for determining physical strength of tablets and ensuring that all the manufactured formulations could meet pharmacopeial criteria with a percentage weight loss of less than 1 %.

The disintegration time of all the formulation tablets is 10 min, F2 is 4 min and 20 sec, F3 is 5 min and 38 sec, F4 is 5 min and 58 sec, F5 is 5 min and 58 sec, F6 is 4 min and 28 sec, F7 is 4 min and 58 sec, and F8 is 8 min and 28 sec, respectively. All produced pills disintegrated in 4 min, 28 sec to 14 min, 20 sec. F2, F8 formulations with a higher level of Soluplus, Acacia: Tragacanth, and Primellose were found to have a high level of disintegration. Content active ingredient.

The medication concentration of all manufactured pills was between 95 and 97 percent. According to IP, the above quality control criteria of the prepared tablets meet the standard specification of uncoated tablets.

Formulation of Ezetimibe by using Soluplus

Dissolution in vitro

Figure.3 demonstrates the in vitro dissolving profile of preparation tablets. In comparison to other formulations, the F1, F4 formulation releases 100 % of the medication in 2.5 min. The F1 formulation, which contains 2.5 mg Soluplus, 4 % Acacia: Tragacanth, and 2.5 percent Primellose, has a much superior dissolution performance. The F4, 4 mg Soluplus, 6 % Acacia Tragacanth, 4 % Primellose has a much superior dissolving performance. The F3 formulation, which contains 100 percent drug release, takes 60 min to complete. The F4 formulation provides 100 % drug release in 2.5 min. The F5 formulation provides 100 % medication release in 7.5 min. The F6 formulation provides 100 % medication release in 10 min. The F7 formulation provides 100 % medication release in 7.5 min. The F8 formulation provides 100 % medication release in 10 min. To increase variability, all formulations result in increased solubility.

Model Dependent

The correlation coefficient values in all situations were greater first order release kinetics rather than zero order release kinetics. “The drug release parameters, t_{1/2}, DE_{10}, PD_5, DR_{90}, MDT, and the dissolution
The tests compared the optimized Ezetimibe tablet formulation F6 (100% drug release 10 min) to the commercially available tablet (Ezentia). The value of f_1 is 11.713 and f_2 was determined to be 99.89, indicating that two curves are equivalent. As a result, the dissolving profiles of the optimized formulation F6 and the market tablet are close or identical shown in Figure 5.

Table 1. Experimental design 2^3 Factorial Design

<table>
<thead>
<tr>
<th>S.no</th>
<th>Factor</th>
<th>High (+)</th>
<th>Low (-)</th>
<th>Central point</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1: Soluplus(mg)</td>
<td>4</td>
<td>2.5</td>
<td>3.25</td>
</tr>
<tr>
<td>2</td>
<td>X2: Acacia: Tragacanth (%)</td>
<td>6</td>
<td>4</td>
<td>12.5</td>
</tr>
<tr>
<td>3</td>
<td>X3: Primellose (%)</td>
<td>4</td>
<td>4</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Table 2. Physical properties of prepared Ezetimibe tablet formulations

<table>
<thead>
<tr>
<th>S.no</th>
<th>Formulation</th>
<th>Hardness (Kg/cm²)</th>
<th>Friability (%)</th>
<th>Disintegration time (min .sec)</th>
<th>Drug content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F1</td>
<td>4.2</td>
<td>0.767</td>
<td>10</td>
<td>95.30</td>
</tr>
<tr>
<td>2</td>
<td>F2</td>
<td>4.4</td>
<td>0.789</td>
<td>14</td>
<td>96.18</td>
</tr>
<tr>
<td>3</td>
<td>F3</td>
<td>4.1</td>
<td>0.994</td>
<td>5.38</td>
<td>95.97</td>
</tr>
<tr>
<td>4</td>
<td>F4</td>
<td>4.3</td>
<td>0.691</td>
<td>5.58</td>
<td>97.58</td>
</tr>
<tr>
<td>5</td>
<td>F5</td>
<td>4.1</td>
<td>0.690</td>
<td>5.58</td>
<td>97.13</td>
</tr>
<tr>
<td>6</td>
<td>F6</td>
<td>4.2</td>
<td>0.674</td>
<td>4.28</td>
<td>96.190</td>
</tr>
<tr>
<td>7</td>
<td>F7</td>
<td>4.4</td>
<td>0.794</td>
<td>4.58</td>
<td>97.178</td>
</tr>
<tr>
<td>8</td>
<td>F8</td>
<td>4.3</td>
<td>0.930</td>
<td>8.28</td>
<td>97.973</td>
</tr>
</tbody>
</table>
Table 3. Dissolution parameters of prepared Ezetimibe tablet formulation

<table>
<thead>
<tr>
<th>Formulation</th>
<th>PD₅</th>
<th>t₁/₂ (min)</th>
<th>DE₁₀</th>
<th>Drug release 90%</th>
<th>MDT</th>
<th>K₁ (min⁻¹)</th>
<th>‘r’ value 1st order</th>
<th>‘r’ value zero order</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>100</td>
<td>2</td>
<td>50</td>
<td>5</td>
<td>26.18</td>
<td>1.8424</td>
<td>.893</td>
<td>0.745</td>
</tr>
<tr>
<td>F2</td>
<td>15.85</td>
<td>5</td>
<td>23.23</td>
<td>49</td>
<td>35.58</td>
<td>0.1013</td>
<td>.933</td>
<td>0.921</td>
</tr>
<tr>
<td>F3</td>
<td>9.6</td>
<td>25</td>
<td>8.287</td>
<td>41.39</td>
<td>41.96</td>
<td>0.0617</td>
<td>.967</td>
<td>0.873</td>
</tr>
<tr>
<td>F4</td>
<td>100</td>
<td>9.1</td>
<td>50</td>
<td>2</td>
<td>26.18</td>
<td>1.8424</td>
<td>.993</td>
<td>0.890</td>
</tr>
<tr>
<td>F5</td>
<td>93.55</td>
<td>6</td>
<td>80.85</td>
<td>30.95</td>
<td>3.154</td>
<td>0.198</td>
<td>0.996</td>
<td>0.874</td>
</tr>
<tr>
<td>F6</td>
<td>80.1</td>
<td>3</td>
<td>69.1</td>
<td>31.50</td>
<td>0.2644</td>
<td>.709</td>
<td>0.928</td>
<td></td>
</tr>
<tr>
<td>F7</td>
<td>76</td>
<td>2</td>
<td>73.37</td>
<td>31.30</td>
<td>0.0524</td>
<td>.948</td>
<td>0.929</td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td>79</td>
<td>4</td>
<td>76.9</td>
<td>33.42</td>
<td>0.344</td>
<td>.934</td>
<td>0.830</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Analysis of variance (ANOVA) of various responses

Percentage Drug Dissolve in 10min (DE₁₀)

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of square</th>
<th>Df</th>
<th>Mean Square</th>
<th>F- Value</th>
<th>P-Value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3557.76</td>
<td>1</td>
<td>3557.76</td>
<td>6.17</td>
<td>0.0348</td>
<td>Significant</td>
</tr>
<tr>
<td>c-Primellose</td>
<td>3557.76</td>
<td>1</td>
<td>3557.76</td>
<td>6.17</td>
<td>0.0348</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>5193.62</td>
<td>9</td>
<td>577.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of Fit</td>
<td>5193.62</td>
<td>7</td>
<td>741.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure Error</td>
<td>0.0000</td>
<td>2</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cor Total</td>
<td>8751.37</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent Drug Dissolve in PD₅

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of square</th>
<th>Df</th>
<th>Mean Square</th>
<th>F- Value</th>
<th>P-Value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5.82</td>
<td>7</td>
<td>0.8311</td>
<td>16.69</td>
<td>0.0207</td>
<td>Significant</td>
</tr>
<tr>
<td>A-Soluplus</td>
<td>0.0249</td>
<td>1</td>
<td>0.0249</td>
<td>0.4994</td>
<td>0.5307</td>
<td></td>
</tr>
<tr>
<td>B-Acacia:Tragacanth</td>
<td>0.0769</td>
<td>1</td>
<td>0.0769</td>
<td>1.54</td>
<td>0.3024</td>
<td></td>
</tr>
<tr>
<td>C-Primellose</td>
<td>1.38</td>
<td>1</td>
<td>1.38</td>
<td>27.75</td>
<td>0.0133</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>2.33</td>
<td>1</td>
<td>2.33</td>
<td>46.80</td>
<td>0.0064</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>0.0576</td>
<td>1</td>
<td>0.0576</td>
<td>1.16</td>
<td>0.3608</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>0.0145</td>
<td>1</td>
<td>0.0145</td>
<td>0.2918</td>
<td>0.6266</td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td>1.93</td>
<td>1</td>
<td>1.93</td>
<td>38.77</td>
<td>0.0084</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>0.1494</td>
<td>3</td>
<td>0.0498</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of Fit</td>
<td>0.1494</td>
<td>1</td>
<td>0.1494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure Error</td>
<td>0.0000</td>
<td>2</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ramarao et al.

Formulation of Ezetimibe by using Soluplus

<table>
<thead>
<tr>
<th>Model</th>
<th>Time require to 50% drug release (50%)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Soluplus</td>
<td>24.15 1 58.34 324.13 0.0003 Significant</td>
<td></td>
</tr>
<tr>
<td>B-Acacia:Tragacanth</td>
<td>72.60 1 72.60 403.33 0.0003</td>
<td></td>
</tr>
<tr>
<td>C-Primellose</td>
<td>85.15 1 85.15 473.05 0.0002</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>24.15 1 24.15 134.17 0.0014</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>17.70 1 17.70 98.34 0.0022</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>113.25 1 113.25 629.16 0.0001</td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td>71.40 1 71.40 396.66 0.0003</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>0.5400 3 0.1800</td>
<td></td>
</tr>
<tr>
<td>Lack of Fit</td>
<td>0.5400 1 0.5400</td>
<td></td>
</tr>
<tr>
<td>Pure Error</td>
<td>0.0000 2 0.0000</td>
<td></td>
</tr>
<tr>
<td>Cor Total</td>
<td>408.95 10</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Comparison of predicted and experimental responses for optimization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition (mg)</td>
<td>24.15</td>
<td>72.60</td>
<td>85.15</td>
</tr>
<tr>
<td>Response</td>
<td>DE10</td>
<td>PD5</td>
<td>T50</td>
</tr>
<tr>
<td>Predicted value</td>
<td>63.623%</td>
<td>87.1442%</td>
<td>5.670 min</td>
</tr>
<tr>
<td>Experimental value</td>
<td>61.23%</td>
<td>85.132%</td>
<td>5.321 min</td>
</tr>
<tr>
<td>Predicted error (%)</td>
<td>-43.10</td>
<td>-52.26</td>
<td>-20.36</td>
</tr>
</tbody>
</table>

Data Analysis

For statistical optimization, the three responses Y1 (DE10), Y2 (PD5), and Y3 (T50) were chosen and fitted to a specified model. Tables 4 summarize Design Expert software was used to compute DEV, Mean, C.V percent, Adj R-squared, Pred R-square, Adeq accuracy, BIC, AICC, -2 log likelihood, F values, and P values, DE10, PD5, and T50 were the dependent responses measured, and two parameters DE10, PD5, and T50 were used as mathematical modeling to confirm the experimental design using a polynomial equation.

\[
Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_1 \beta_2 X_1 X_2 + \beta_3 X_3 + \beta_1 \beta_3 X_1 X_3 + \beta_2 \beta_3 X_2 X_3 + \beta_1 \beta_2 \beta_3 X_1 X_2 X_3
\]

Where Y is the dependent variable, \(\beta_0 \) is the mean response of 8 runs and \(\beta_1, \beta_2, \beta_3 \) is the estimated coefficient for corresponding factor \(X_1 \) each represent the average result of changing 1 factor at a time from it low to high value. The interaction time \((X_1 X_2, X_1 X_3, X_1 X_2 X_3) \) defeat the changes in the response when three factors simultaneously change.

HBB. 6(3): 33-56
Ramarao et al.

a. Responses DE_{10} (Y1)
The DE10 analysis of variance yielded a statistically significant result of $p<0.0348$, as shown in Table 4. The model equation $\text{DE10} = -48.84805 + 14.05892 \times X3$. The presence of a positive sign for $X3$ suggests that the concentration of Primellose (superdisintegrant) is increasing, as is the concentration of DE10. DE10 has an R-square of 0.4065, showing that the independent and dependent variables are well correlated. The ‘F’ valued for DE10 was found to be of model 6.17 and independent variable $X3 = 3557.76$ and other statistical parameters such as Adj.R$^2 = 0.3406$, PRESS =7286.11, Adeq precision =4.1176, BIC=103.74, AICc=104.45, -2 log likelihood =-16.07, Mean =3.92, Std. DEV=0.2232, C.V% =56.48, Pred R square. =0.1674.

b. Responses PD5 (Y2)
The PD5 model's analysis of variance yielded a statistically significant result of $p<0.0207$. Table 4 shows the results of the PD5 analysis of variance. The model equation can be used to describe the parameter PD5. $\text{PD5} = + 59.51651 - 17.22639 \times X1 - 5.92350 \times X2 - 5.92350 \times X3 + 1.77912 \times X1 \times X2 + 2.10804 \times X1 \times X3 + 0.723844 \times X2 \times X3 - 0.218350 \times X1 \times X2 \times X3$. The presence of a positive sign for $X3$ suggests that the concentration of Primellose (superdisintegrant) is increasing, as is the percent drug dissolve in 5 min (PD5). The R-square score of 0.9750 for PD5 indicates that the independent and dependent variables are well correlated. The ‘F’ valued for PD5 was found to be of model 16.69 and independent variable $X1 = 0.0249$, $X2 = 0.0769$, $X3 = 1.38$ and other statistical parameters such as Adj.R$^2 = 0.9165$, Adeq precision =12.3125, BIC= 3.11, AICc=71.93, -2 log likelihood =-16.07, Mean =3.92, Std. DEV=0.2232, C.V% =56.48, Pred R square. =-4.8982.

c. Response T_{50} (Y3)
The T_{50} analysis of variance model yielded a statistically significant $p<0.0003$ result. Table 4 shows the T_{50} analysis of variance. The model equation can determine the attractiveness of the parameter T_{50}. $Y3 = -357.97543 + 86.97778 \times X1 + 41.47222 \times X2 + 49.22222 \times X3 - 9.78889 \times X1 \times X2 - 11.95556 \times X1 \times X3 - 5.56944 \times X2 \times X3 + 1.32778 \times X1 \times X2 \times X3$. The positive indication for $X1 \times X2 \times X3$ suggests that the concentration of Soluplus, Acacia: Tragacanth, Primellose (superdisintegrant) increases by 50% in t_{50}. The R^2 value of 0.9987 for T_{50} indicates that the independent and
dependent variables are well correlated.
The ‘F’ value for T50 was found to be of model 324.13 and independent variable X1= 24.15, X2 =72.60, X3=85.15 other statistical parameters such as Std. DEV =0.4243 , Mean =7.15, C. V % =5.94, PRESS=127.20, -2 log likelihood =-1.94, Adj R-squared=0.9956, Pred R-squared=0.6890, Adeq precision=63.5678, BIC=17.25, AICc=86.06.

The contour and response surface as a function of three factors at the same time, with all other parameters held constant, are more useful in understanding both the individual and interaction effects of three components. Figure.4 is shown contour and response surface plots, as well as the desirability, overlay plot, and optimized plots of all formulation components.

Optimization
The optimal formula had a greater desirability concern (0.72465), indicating that the formulation was suitable. Each answer is fine-tuned to the desired target point (Y1) to obtain product, DE10 was set to be the objective, PD5 (Y2) was set to be the target, and T50 (Y3) was set to be maximized. Table.5 shows three independent variables for optimizing in accordance with response goals by using a desire function, with X1, X2, and X3 being 3.25 mg, 5 %, and 6.5 percent for accordingly with a corresponding desirability function of 0.72645. The statistical optimization was performed on the optimized formulation to ensure that all of the dissolution parameters were met, allowing the theoretical prediction to be confirmed. In vitro percentage drug release DE10 was found to be 61.23 percent, PD5 was found to be 85.124, and T50 was found to be 85.132. Table.8 shows the results for observed and close agreement with model prediction.

For relative errors percent between anticipated and experimental values were determined, and the results were -3.908 percent, -2.363 percent, and -6.155 percent, respectively. The experimental values matched the anticipated values, demonstrating the model's predictability and validity. DE10 was 61.23 percent, PD5 was 85.123 percent, and T50 was 5.321 minutes in the optimized formulation. The optimal formulation's drug release follows a first-order kinetic model. The percentage prediction error was used to compare the predicted value to the experimental value in order to measure the prediction's dependability and accuracy.
DISCUSSION

The dissolution behavior of different solid dispersions good drug release property than pure drug release of more than 2 hours and in vitro performance shown in Figure 2. The FTIR spectrum of pure drug and mixtures with various excipients were similar it indicates no chemical interaction between the drug and excipients are shown in Figure 1. The physical properties of tablets such as hardness, friability and drug content and disintegration time fulfill official specifications as per IP shown in Table 2. The order of drug dissolution of various formulations is displayed in ascending order shown in Figure 3, F2 < F3 < F6 < F8 < F7 < F5 < F1 < F4. The comparison of dissolution profiles of the optimized formulation (F6) and the market tablet are identical are shown in Figure 5. The dependent variables such as DE10, PD 5 and T50 are shown analysis of variance yielded a statistically significant shown in Table 4. The higher the desirability value, the better the formulation and the optimal equations can be obtained directly from the desire function response surface plots shown in Figure 4.

Figure 1. FTIR of Ezetimibe
Figure 2. Mean dissolution profile of Ezetimibe drug and its solid dispersions (n=4) (SD±0.125).
Figure 3. Mean dissolution profile of ezetimibe tablet formulation F1-F8(n=4)(SD±0.325).
Formulation of Ezetimibe by using Soluplus

Figure 4 Overlay, Desirability, Contour plot 3D, Surface plot T50.
CONCLUSION

The current study successfully conceived and developed 2^3 factorial designs to optimize ezetimibe formulation. When solid dispersions were compared to pure medication with various carriers, the dissolution of the solid dispersions was dramatically improved. The FTIR spectra of pure drug and combinations with diverse excipients were comparable, indicating that the drug and excipients have no chemical interaction. The manufactured tablets' (F1 to F8) quality control characteristics meet the standard IP specification for uncoated tablets. The F1 formulation, which contains 2.5mg of Soluplus, 4% Acacia: Tragacanth and 2.5 percent Primellose as a considerably quick dissolving performance, and the F4 formulation, which contains 4mg of Soluplus, 6% Acacia: Tragacanth, and 4% Primellose as a significantly rapid dissolution performance. The order of medication

Figure 5. Comparative dissolution profile of optimised formulation (F6) and marketed tablets (Ezentia)(n=4)(SD±0.229).
dissolution of diverse formulations is rising
\[\text{F2} > \text{F3} > \text{F6} > \text{F8} > \text{F7} > \text{F5} > \text{F1} > \text{F4}.\]

The dissolution characteristics of optimized formulation (F6), (100% drug release in 10 min) and market tablets are comparable or identical. DE10, PD5, and T50 had statistically significant \(p < 0.0001\) in ANOVA (Analysis of Variance). To verify the theoretical prediction, statistical optimization was performed on the optimized formulation to satisfy all of the dissolution parameters. The optimal formulation's drug release follows a first-order kinetic model.

ACKNOWLEDGEMENT

The author thankful to Sri Venkateswara College of pharmacy provides research facilities, Seshu.Kodati from IMCD Pvt. Ltd, Mumbai provide gift samples of Soluplus, SuperTab-11 SD and Primellose. G.Srinivasaraao, FTIR sampling from Obvez Lab, Hyderabad, PV.Bhaskar, GSK.Pvt.Ltd for Design Expert software support.

REFERENCES

[7]. Tripura Sundari P and Mounika P et al. Formulation and evaluation of smedds

[18]. Nisha Thakre, Kapil Khatri et al. Development and characterization of solid...

[29]. Srinivasarao B and Vijayaratna J. Sustained release matrix tablets of Diclofenac sodium employing Kollidon
Ramarao et al.
SR, PEG 6000, Lactose mono hydrate and Eudragit S100 in colon target. Indian Drugs. 2017; 54(10): 38-43.

[34]. Mehra N, Aqil M, Sultana Y. A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: Formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and

