Association study of leptin and leptin receptor gene polymorphisms with diabetes type 2 and obesity

Hassan Taghizadeh 1, Hamed Abdolkarimi 2, Homa Bazireh 3, Roxana Houshmand 3, Zahra Shahbazi 4, Shahin Mohammadi 1, Eskandar Taghizadeh 5*

1Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
2Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
3Department of Genetics, Tehran Medical Science Branch, Islamic Azad University, Tehran, Iran
4Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
5Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

*Corresponding author: Eskandar Taghizadeh, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Email: eskandar.taghizadeh@yahoo.com

Received: June 11, 2017; Accepted: September 17, 2017

ABSTRACT

The adiposity hormone, leptin, plays an important role in the control of glucose metabolism by its action in the brain. The effects of leptin are reducing body adiposity, food intake and improving insulin sensitivity in peripheral tissue by indirect mechanism. This study was performed to investigate the prevalence and association A19G and K109R polymorphisms in leptin (LEP) and leptin receptor genes (LEPR) with diabetes and obesity in Yazd, Iran. In this case control study, the case groups were 100 obese people with type 2 diabetes mellitus and the control groups were 100 healthy people. Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The allele frequency for A and G alleles in LEP gene (A19G) were 0.275 and 0.725, respectively. Also K and R alleles in LEPR gene (K109R) were 0.36 and
0.64, respectively. The genotype and allele frequencies were not significantly different for patient and control groups. HBA1C and leptin were high in patient group. The LEP and LEPR SNPs in this study may not be useful markers for obesity or diabetes in Iranian population but with attention to the past studies these SNPs may have synergistic effects on obesity and diabetes.

Keywords: Polymorphism, diabetes, obesity, leptin, leptin receptor

INTRODUCTION

Diabetes and obesity are two complicated disorder with genetic background that increase the mortality [1-3]. The prevalence of type 2 diabetes has increased considerably since 1960 aligned with obesity [4]. Nearly to 80 % of the people with type 2 diabetes mellitus are overweight [5]. Studies have shown people with obesity for 10 years are two times high risk than people with obesity for less than 5 years [6]. Genetic predisposition plays an important role in creating these conditions [7]. Leptin was discovered in 1994 with isolation of obesity gene. Leptin is a 16 kDa glycoprotein hormone secreted by white adipose tissue (WAT) [8] which is in proportion to body fat mass, enters the central nervous system in proportion to its plasma level and interacts with its receptor, expressed in brain areas that regulate energy consumption, autonomic function and food intake. While the effect of leptin can improve insulin sensitivity in peripheral tissues by indirect mechanisms, many observations recommend that leptin can directly affect glucose metabolism and energy balance [9]. The gene is placed on chromosome 7 (7q31) [8]. This hormone binds to its receptor (LEPR) and has an important role in regulating of metabolism [10]. Leptin receptor also is produced by a gene on human chromosome1 [11]. Leptin obtained from the adipose tissue affect the insulin sensitivity, and impress the pathogenesis of disorder related obesity by stimulating vascular inflammation that may cause pathogenesis of atherosclerosis and other cardiovascular problems of obesity. Leptin has also a link with nutritional status and energy balance.

Various polymorphisms are existence in leptin and its receptor gene including A19G and K109R. The A19G SNP (rs 2167270A>G) is located in 19t nucleotide in the untranslated region (UTR) of the LEP gene and K109R SNP (rs 1137100A>G) is located in exon 4, and changes 109 amino acid codon from AAG to AGG in LEPR gene. K109R SNP causes a conservative change in conversion lysine amino acid to arginine amino acid (Lys/K to Arg/R) [12, 13]. In this study, we selected people who
have type 2 diabetes mellitus with obesity in order to investigate the leptin and leptin receptor polymorphisms with PCR method.

MATERIALS AND METHODS

Study population

In this case and control study, samples were collected from Yazd public center in Iran. All the participants in the case group had diabetes and obesity for at least 2 years, and they were 100 person. The patients in the case group were diagnosed according to body mass index (BMI) for obesity and laboratory tests for diabetes. The questionnaires were filled based on the ages, weights (kg) and BMI (kg/m²). BMI indexes were about 30, and laboratory test results showed diabetes in the case group. Also biochemical parameters include leptin and HbA1c were measured with laboratory tests and methods. Obesity and diabetes diagnosis were proved by physicians in the hospital. This proposal was proved by ethical committee and all subjects in the case and control groups were volunteers and briefed about the use of the results and they were also asked to agree with a consent form. Table 1 is a summary of the case and control group characteristics, such as BMI, HBA1C, wight, age and leptin level.

<table>
<thead>
<tr>
<th>Sample collecting and genotyping</th>
</tr>
</thead>
</table>

5 mL of blood sample was collected from all participants for biochemical and genetic investigations. Serum levels of HBA1c and leptin were measured using the Pishtazteb kit and the enzyme-linked immune sorbent assay kit, respectively. DNA extractions were done manually with salting out method using cell lysis buffer, nuclei lysis buffer, proteinase K, ethanol, and some salts like Sodium Dodecyl Sulfate (SDS) and NaCl. DNA concentration, quality, and purity were checked using spectrophotometric methods [14]. Afterwards, polymerase chain reaction (PCR) was done for amplification of leptin gene promoter (contains rs 2167270-A19G) and exon 4 of leptin receptor genes (contains rs 1137100-K109R). Restriction length polymorphism (RFLP) was done using Nsp BII and HaeIII restriction enzymes (New England Biolabs) for A19G (rs 1137100) and K109R (rs 1137100) Polymorphisms, respectively. We controlled PCR and digestion

<table>
<thead>
<tr>
<th>Table 1. Demographic characteristics of case and control groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>age</td>
</tr>
<tr>
<td>weight</td>
</tr>
<tr>
<td>BMI (KG/M²)</td>
</tr>
<tr>
<td>Leptin (ng/ml)</td>
</tr>
<tr>
<td>HbA1c (%)</td>
</tr>
</tbody>
</table>

Leptin gene and type 2 diabetes
product size with agarose gel electrophoresis. The primers, PCR product sizes, restriction enzymes recognition sites and digestion products for two polymorphisms are shown in Table 2.

Table 2. PCR primers and product sizes

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>Primer sequence</th>
<th>Tm</th>
<th>PCR Product size</th>
<th>Restriction enzyme</th>
<th>RFLP product size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A19G</td>
<td>Forward 5’- CCCGCGAGGTCACACTG-3’ Reverse 5’- AGGAGGAAGGAGCGC3’</td>
<td>55</td>
<td>55.5</td>
<td>221 bp</td>
<td>Nsp BII</td>
</tr>
<tr>
<td>K109R</td>
<td>Forward 5’- TTTCCACTGTTTCTTTCGGA -3’ Reverse 5’- AAACGTATTACTGTGGA-3’</td>
<td>55.5</td>
<td>56</td>
<td>100 bp</td>
<td>HaeIII</td>
</tr>
</tbody>
</table>

Statistical analysis

Statistical Package for Social Science (version 16.0, SPSS, Chicago, Illinois, USA) and X² test were used for data analysis. Allelic frequencies for each SNP were estimated and the distribution of genotypes frequencies within Hardy-Weinberg equilibrium rules was determined. The normality of sample population for variables was checked with the Kolmogorov-Smirnov test and the variables that were not normally distributed excluded from the study and substituted with other variables.

RESULTS

Table 1 shows characteristics of the samples, like average age and BMI, weight, and leptin level measures in both groups. Distributions of the genotypes and frequencies of the alleles for LEP gene polymorphism, A19G and LEPR gene polymorphism, K109R in the case and control groups are represented in Table 3. For leptin gene polymorphism, A19G, the prevalence of allele A in the patient and control groups were 27.5 % and 28.5 %, respectively. The G allele frequencies were 72.5 % and 71.5 % for the patient and control groups, respectively. No significant association was found between the risk of obesity related diabetes and homozygous or heterozygous genotypes of this polymorphism (Table 3).
Table 3. SNPs allele and genotype frequencies

<table>
<thead>
<tr>
<th>SNP/Genotype/Allele</th>
<th>case group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEP A19G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>AG</td>
<td>43</td>
<td>35</td>
</tr>
<tr>
<td>GG</td>
<td>51</td>
<td>54</td>
</tr>
<tr>
<td>p-value=0.598</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>55</td>
<td>57</td>
</tr>
<tr>
<td>G</td>
<td>145</td>
<td>143</td>
</tr>
<tr>
<td>LEPR K109R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KK</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>KR</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>RR</td>
<td>49</td>
<td>47</td>
</tr>
<tr>
<td>P value=0.366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>72</td>
<td>71</td>
</tr>
<tr>
<td>R</td>
<td>128</td>
<td>129</td>
</tr>
<tr>
<td>P value=0.819</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The genotype distributions of LEPR gene polymorphism K109R in the case and control groups are presented in Table 3. For leptin receptor gene, the frequency of allele R in the case and control groups were 36 % and 35.5 %, respectively. K allele frequencies were 64 % and 64.5 % in the case and control group, respectively.. No significant association was found between homozygous and heterozygous genotypes of this polymorphism with risk of obesity and diabetes.

Table 4. Genotypes and leptin concentration Correlations

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Number</th>
<th>Mean leptin concentration ± SD(ng/mL)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEP(-2548)G/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>6</td>
<td>29.8±22.3</td>
<td>P=0.271</td>
</tr>
<tr>
<td>GA</td>
<td>43</td>
<td>31.4±20.4</td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>51</td>
<td>30.2±23.2</td>
<td></td>
</tr>
<tr>
<td>LEPRQ223R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KK</td>
<td>21</td>
<td>28.5±21.9</td>
<td>P=0.321</td>
</tr>
<tr>
<td>KR</td>
<td>30</td>
<td>33.0±22.7</td>
<td></td>
</tr>
<tr>
<td>RR</td>
<td>49</td>
<td>29.7±20.5</td>
<td></td>
</tr>
</tbody>
</table>

The relationship between different genotypes of LEP gene polymorphism, A19G and LEPR gene polymorphism, K109R with plasma leptin levels was investigated (Table 4). No significant combination was found between the levels of leptin hormone and the two polymorphisms. In addition, no significant combination was found between the two polymorphisms and pathologic parameters in the case and control groups (Table 4).
DISCUSSION

Diabetes and obesity are two complicated disorder with genetic background [3]. The popularity of type 2 diabetes had increased considerably since 1960, and approximately 80% of the people with type 2 diabetes mellitus are overweight [15]. Leptin which is produced by adipose tissue, has an important role in obese and diabetic people [16]. Mutations in leptin and leptin receptor can affected the leptin receptor signal [17]. According to the previous studies, mutations in this gene are associated with overweight in humans. Several polymorphisms in leptin gene and its receptor have been identified, such as A19G and K109R. Due to A19G SNP, the promoter of leptin gene can affect the expression of this gene. Also the K109R polymorphism in leptin receptor gene is associated with incomplete binding of leptin to its receptor [12, 18]. The present study examined the relationship between A19G leptin gene polymorphism and K109R leptin receptor gene polymorphism in people with obese and diabe in Yazd province. In the present study, no significant correlation was found between K109R polymorphism, diabetes diseases and obesity risk. The LEPR K109R SNP (rs1137100) is an A→G substitution in codon 109 (AAG to AGG) at position 326 in exon 4 [19]. K109R SNP causes some changes in leptin receptor in conversion lysine amino acid to arginine amino acid (Lys/K to Arg/R) and these changes can affect functional consequences but its alternation in functionality is not clear. There are not reason that the polymorphisms in LEPR are related to diabetes [20]. Hancock et al reported that associations of some LEPR SNPS (which includes K109R). Environmental changes that play a key role in the metabolic phenotypes such as overweight. The researchers suggest that these SNPs such as LEPR K109R might have advantageous in the other area. Consist with them; LEPR K109R SNP is an examples to explain the correlation between genetic sensitivity to metabolic diseases and environmental factors [12].

Also no significant differences were found between A19G polymorphism and diabetes and obesity risk. This conclusion is consist with most previous studies and confirmed by several studies including investigations on population groups [21-23]. The A19G (rs2167270) SNP is a single base substitution A→G in exon 1 of the LEP gene. Because this SNP is located within the first untranslated exon of the gene, it is not fully understood that this polymorphism how can change the protein function. Nevertheless, it is suggested that the SNP is in disequilibrium with promoter area variation and may has an effect on the gene expression. But it is not clear that how DNA sequence in the promoter area of
this gene could influence promoter activity or
gene function.
The serum leptin levels between the patient and
control groups were different and this may be
because of higher amount of adipose tissue in
patient than control group. Many investigators
demonstrated that leptin has a main correlation
with BMI [24]. In this study, leptin levels were
in correlation with BMI HBA1C is a
glycosylated hemoglobin in people with
diabetes and it is an important marker for
control this disease [25]. We not found
correlation between leptin levels and different
genotype groups of A19G and K109R
polymorphisms, and this result is confirmed
[12].

CONCLUSIONS
The present results show that SNPs in LEP
gene and LEPR gene include A19G and K109R
are unlikely related to obesity and diabetes in
Iranian people but our findings suggest that each
of these SNPs may have synergistic effects on
obesity and diabetes.

CONFLICT OF INTEREST
The authors declare no conflicts of interest

REFERENCES
[1]. Astrup A, Finer N. Redefining type 2
diabetes: ‘diabesity’ or ‘obesity dependent
[2]. Forbes JM, Cooper ME. Mechanisms of
diabetic complications. Physiol Rev, 2013;
93(1): 137-88.
[3]. TA S. Diagnosis and classification of
JC. Diabetes in the africa region: an update.
[5]. Group LAR. Association of the magnitude
of weight loss and changes in physical fitness
with long-term cardiovascular disease outcomes
in overweight or obese people with type 2
diabetes: a post-hoc analysis of the Look
AHEAD randomised clinical trial. Lancet
[6]. Bell JA, Kivimaki M, Hamer M.
Metabolically healthy obesity and risk of
incident type 2 diabetes: a meta analysis of
prospective cohort studies. Obes Rev, 2014;
[7]. Wang B, Charukeshi Chandrasekera P,
Pippin JJ. Leptin-and leptin receptor-deficient
rodent models: relevance for human type 2
diabetes. Curr Diabetes Rev, 2014; 10(2): 131-
45.
[8]. Mahmoudi R, Noori Alavicheck B, Nazer
Mozaffari MA, Fararouei M, Nikseresht M.
Polymorphisms of leptin (-2548 G/A) and leptin
receptor (Q223R) genes in iranian women with

[10]. Varela L, Horvath TL. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep, 2012; 13(12): 1079-86.

