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  ABSTRACT 

Several thiourea derivative compounds have been used as inhibitors of Plasmodium falciparum 

via the plasmepsin inhibition pathway. The thiourea derivative (compound 3) namely 1-{1-(3,4-

dimethoxyphenyl)-4.6-bis[(3,4-dimethoxyphenyl)methyl]heptane-2-yl]-3-{[ (2E)-3-phenylprop-

2-en-1-ylium-1-yl]amino}thiourea was synthesized using the one-pot synthesis method by 

comparing the renewable starting reagents Methyl Isoeugenol (MIE) and Methyl Eugenol (ME). 

Observation using FTIR and LCMS-MS was shown that ME is more representative as a precursor. 

Compound (3) was synthesized using ME isothiocyanate compound (2), hydrazine, and 

cinnamaldehyde at 70 °C for 5 h, yielding 0.2769 g (22.47 %), and the molecular ion is 740 (98 % 

area). In vitro bioactivity tests against Plasmodium falciparum 3D7 of compound (3) resulted in 

IC50=10.19 ppm. Molecular docking of ligand (3) gave an insight that the compound (3) was a 

promising anti-Plasmodium falciparum compound. 

Keywords: Methyl isoeugenol, methyl eugenol, thiourea derivative, Plasmodium falciparum 

 

 

INTRODUCTION 

Methyl isoeugenol (Figure 1a)  is the main 

component in the Pimenta 

pseudocaryophyllus plant [1,2]; Veronica 

austriaca ssp. jacquinii (Baumg.) Eb. Fisch 

[3]; Daucus carota subsp. Maritimus, 

Daucus carota subsp. Hispidus, and 

Daucus carota subsp. Carota [4]. Methyl 

isoeugenol was reported as a fiber dye, 
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anxiolytic, and antidepressant [1,5]. Methyl 

isoeugenol acts as a precursor compound 

[6–8]. Methyl isoeugenol has been reported 

as an active agent against Aedes aegypti 

larvae [9] and nematicidal [10]. Methyl 

isoeugenol is a more active attractant for 

the fruit fly Bactrocera xanthodes (Broun) 

(Dacinae) compared to methyl eugenol 

[11].  

Methyl eugenol (1,2-dimethoxy-4-(prop-2-

en-1-yl)benzene) is a compound that 

resembles methyl isoeugenol (1,2-

dimethoxy-4-(prop-1-en-1-yl) benzene). 

The difference between Methyl Eugenol 

(ME) and Methyl Isoeugenol (MIE) lies 

only in the position of the double bond in 

the propenoid group; methyl isoeugenol 

has a double bond position at C2 and C3, 

while methyl eugenol has a double bond 

position at C1 and C2 (Figure 1b). Methyl 

isoeugenol and methyl eugenol can be 

derived from eugenol methylation. Eugenol 

is a major component in clove Syzygium 

aromaticum, Ocimum basilicum, Glycine 

max (L.) Merr., Croton zehntneri Pax et 

Hoffm, dan Laurus nobilis L. [12–14]. 

Methyl eugenol was reported as a fish 

anesthetic compound [15]. ME is an 

essential antioxidant, anti-inflammatory, 

anti-bacterial, anti-fungal, and attractant 

[16–18]. ME was a precursor in 

synthesizing bioactive compounds [19,20].  

Many active compounds for P. falciparum 

inhibitors have urea or thiourea character,  

for instance, compounds were presented in 

Figure 1g and Figure 1h. The nitrogen and 

sulfur atoms in thiourea and urea 

predictively play a vital role in the 

bioactivity of the active compounds [21–

23]. The precursor potencies of MIE and 

ME for the synthesis of thiourea derivative 

as anti-Plasmodium falciparum 

compounds are not yet known, and 

motivated to carry out this research. 

Malaria caused by P. falciparum is the most 

fatal infectious disease and faces drug 

resistance problems, making the new drug 

discovery continue. One focus of the drug 

Plasmodium falciparum target is 

plasmepsin (aspartic protease), which is 

important in the survival and spread of the 

parasite. There are ten plasmepsins in 

Plasmodium falciparum, namely PfPMI, 

PfPMII, PfPMIV, PfPMV, PfPMVI-X, and 

Histo-Aspartic Protease (HAP) [24]. PMI-

IV and HAP are found in food/digestive 

vacuoles and play a role in Hb catabolism. 

This intra-erythrocytic stage is critical 

because the survival of the parasite depends 

on the consumption of host hemoglobin 

(Hb) in the food vacuole as the primary 
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amino acid source for parasite growth and 

maturation [25,26]. Meanwhile, PMX 

plays a role in therapeutic intervention as a 

maturase for rhoptry and microneme 

proteins [27–29]. Plasmepsin I and 

Plasmepsin X have inhibitors in the form of 

high molecular weight compounds and 

contain N, S, and urea groups. 

This research aims to: 1. Conversion of 

MIE and ME as MIE-Isothiocyanate (1) 

and ME-Isothiocyanate (2); 2. Comparative 

analysis of synthesis products (1) and (2) 

using Thin Layer Chromatography (TLC), 

Fourier Transform Infrared (FTIR), and 

Liquid Chromatography-Mass 

Spectrometry tandem Mass Spectrometry 

(LCMS-MS); 3. Synthesis of thiourea 

derivative compound (compound 3) using 

one potential precursor; 4. Analysis of 

compound (3) using TLC, FTIR, LCMS-

MS, and in vitro P. falciparum test; 5. 

Molecular docking and interaction (2D and 

3D) analysis of compound (3) via 

Plasmodium falciparum Plasmepsin I 

(PfPMI) and Plasmodium falciparum 

Plasmepsin X (PfPMX) inhibitions. 

 

MATERIALS AND METHODS 

Methyl isoeugenol and methyl eugenol 

were derived from clove oil. Potassium 

thiocyanate (KSCN), potassium hydrogen 

sulfate (KHSO4), chloroform, ethanol, n-

hexane, ethyl acetate, sodium bicarbonate, 

hydrazine, cinnamaldehyde, hydrochloric 

acid (HCl), nitrogen gas, Thin Layer 

Chromatography (TLC) GF254 plate and 

supporting solvents with pro-analysis 

grade. 

 

Synthesis of compound (1) and compound 

(2) 

Compounds (1) and (2) were synthesized 

by using the ratio of MIE: HSCN = 1:20 

(mmol) at room temperature for 24 hours. 

HSCN was produced by referring to 

modified procedures [30,31]. After 24 

hours of reaction time, the orange powder 

was filtered, dried by nitrogen gas flow, 

and put in a vial. The same above procedure 

was applied to the ME. All the steps were 

done triplo. Orange-colored solid products 

from the synthesis process were analyzed 

using the TLC method. Wavenumber 

between 500–4000 cm-1  in Fourier 

Transform Infrared Shimadzu instrument 

was used to diagnose functional groups in 

all synthesized compounds by KBr pellet. 

Compounds (1) and (2)  were identified by 

Liquid Chromatography-Mass 

Spectrometry tandem Mass Spectrometry 

(LCMS-MS) triple quadrupole 8060 

Shimadzu at λ = 290 nm. One optimum 
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product was obtained for the synthesis 

precursor of the thiourea derivative. 

 

Synthesis of compound (3) 

The compound (3) was synthesized by 

modified one-pot methods [32–37]. Firstly, 

2.86 mmol of compound (2) dissolved in 

ethanol. Synthesis was carried out by 

adding 2.86 mmol of hydrazine into a 

reaction flask containing 2.86 mmol of 

crude compound (2). The mixture was 

stirred at 70 °C for 5 hours. Then, without 

the separation process, the reaction mixture 

was added by 2.86 mmol of 

cinnamaldehyde and 5 ml of 10 % HCl. The 

reaction was continued for 2 hours. The 

yellow-colored solid phase was purified by 

recrystallization using hot ethanol and then 

analyzed using TLC, FTIR, dissolution, 

and melting point. Compound (3) was 

identified by the LCMS-MS XEVO-

G2SQTOF (Waters) instrument.  

 

The culture of Plasmodium falciparum 

and in vitro bioactivity test 

The bioactivity of compound (3) against 

Plasmodium falciparum 3D7 (chloroquine-

sensitive) was observed by in vitro assay 

using the Giemsa stained slide method 

[30,38,39]. Plasmodium falciparum was 

cultured by using the Trager and Jensen 

methods. The parasites were grown in fresh 

erythrocytes with 5 % hematocrit, 25 mM 

Hepes Buffer, 50 μg/ml hypoxanthine, 2 

mg/ml NaHCO3, and 10 μg/ml gentamycin, 

then incubated at 37 °C. Giemsa’s stained 

method was used for analyzing infected 

erythrocytes.  

The anti-Plasmodium was tested by the 

Giemsa stained slide procedure. Ten mg of 

compound (3) was diluted in 1 ml DMSO 

and added by RPMI-1640 medium to make 

serial concentration at 0.01, 0.1, 1.0, 10, 

and 100 μg/ml and placed in 24 well plates. 

Observation was done until 48 hours at the 

well plates after adding 500 μl parasite 

culture (incubated at 37 °C). The 

percentage of parasitemia was counted by 

microscope for infected erythrocytes per 

1000 total erythrocytes. The growth 

inhibition (%) was calculated by using this 

equation: 

Growth inhibition = 100 % - (Xe

Xk
 x 100%)  

Xe=the average parasitemia of the 

experimental group. 

Xk=the average parasitemia of negative 

control.  

The IC50 values were determined by four 

parameters logistic curve to the dose-

response data using GraphPad Prism 7.0 

software. 
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Molecular docking 

MarvinSketch was re-downloaded in 

October 2023 to draw the compound (3) 

structure. Chloroquine's structure was 

downloaded from 

http://www.chemspider.com  and used as a 

co-drug ligand. Plasmodium falciparum 

plasmepsin I (PfPMI) and Plasmodium 

falciparum plasmepsin X (PfPMX) with 

PDB code 3QS1 chain A and 8DSR chain 

B, respectively,  were used as receptors. 

Chimera optimized the structures of all 

receptors, chloroquine, and compound (3). 

Macromolecule optimization was carried 

out by dockprep, adding hydrogen and the 

Amber ff14SB AM1-BCC charge. Ligand 

optimization was carried out by adding 

hydrogen atoms and Gesteiger charges. 

Structure’s compound (2) was also 

prepared for comparison. Re-docking using 

the native ligands was done for docking 

calibration. 

 

Specific molecular docking was carried out 

using the PyRx-integrated Autodock Vina. 

The compound's molecular energy was 

minimized, and molecules were converted 

into ligands. Grid box for 3QS1 chain A 

and ligand was set at size x = 33.30, y = 

29.59, z = 35.23. The grid box was centered 

at x = 26.29 Å; y = ˗13.10 Å, z = 5.52  Å. 

Whereas the grid box for specific docking 

of 8DSR chain B and ligands was 

conditioned at x = 10.01, y = 17.50, z = 

19.81 in dimensions of x = ˗24.22 Å, y = 

˗1.16 Å, z = 14.12 Å. The best affinities 

energy of complex receptor and ligand 

were chosen at root mean square deviation 

(rmsd) < 2.0. The molecular interactions 

(2D and 3D) inside the receptor and ligand 

complex were analyzed by Discovery 

Studio 2019 Client [40–42]. 

 

RESULTS 

The reaction of MIE and thiocyanic acid at 

room temperature for 24 hours produces an 

orange solid. An orange-colored product 

was also formed during the reaction of ME 

and thiocyanic acid in different reflux 

apparatuses [30,31]. Preliminary TLC data 

shows that MIE produces a retention factor 

(Rf) of 0.875 while ME has two spots with 

Rf of 0.675 and 0.750, which are predicted 

as isomers of the ME compound. TLC data 

on compound (1) and compound (2) shows 

that there are new spots, including at Rf 

0.40, 0.45, and 0.55 which indicates that the 

synthesis products are crude with several 

new compounds that have been formed. 

Elution was done by eluent n-hexane: ethyl 

acetate =1:1(v/v). The weight of compound 

http://www.chemspider.com/
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(1) was yielded 0.0277 g, and compound 

(2) 0.1331 g (yield 25.56 %). 

The solubility test for compounds (1) and 

(2) was carried out in two types of solvent 

(DMSO and water) by adding drops of 2 ml 

solvent to 2.0 mg of sample in a test tube. 

Solubility data shows that both synthesized 

compounds dissolve completely in DMSO, 

not dissolved in water for compound (1) 

and partially dissolved in water for 

compound (2). FTIR analysis shows 

isothiocyanate absorption at wavenumbers 

2061 cm-1 and 2049 cm-1 for compounds 

(1) and (2), respectively. However, the 

solid compound (1) shows thiocyanate 

absorption at around 2157 cm-1 which 

makes a deep prediction that the reaction of 

MIE and thiocyanic acid produces a crude 

thiocyanate solid compound. Melting point 

(Mp) analysis shows that compounds (1) 

and (2) have Mp 158-162 °C and 214-216 

°C, respectively, which indicates that the 

two precursors product are crudes. LCMS-

MS analysis further confirms several 

compounds inside the compound (2) viz 

fractions of ME polymerization and ME 

isothiocyanate products. 

The LCMS-MS spectrum of compounds 

(1) and (2) shows that the largest areas are 

methyl eugenol and methyl isoeugenol 

polymerization. It can be understood 

because the isothiocyanate group is 

unstable and could be released during the 

heating process of the instrument. The 

conversion of methyl eugenol to ME 

isothiocyanate derivatives is predictively 

occurs by polymerization of methyl 

eugenol molecules, and then synthesis of 

compound (1) is also predicted to produce 

a polymer compound of MIE [30,31]. 

Compounds (1) and (2) each have 415.05 

and 416.45 molecular ions with an area of 

3.73 % and 10.59 % respectively. Since the 

thiourea synthesis should be arranged in the 

isothiocyanate pathway [34], then 

compound (2) was chosen as a further 

precursor for the synthesis of thiourea 

derivative compound (3). Although too 

premature to make compound names, the 

proposed scientific name for compound (1) 

is 4,4’-(2-methyl-4-thiocyanatopentane-

1,5-diyl)bis(1,2-dimethoxybenzene) by 

ChemDraw or {[1-(3,4-dimethoxyphenyl)-

4-[(3,4-dimethoxyphenyl)methyl]pentan-

2-yl]sulfanyl}carbonitrile as a preferred 

IUPAC name by MarvinSketch. Whereas 

for compound (2) is 4,4’-(2-isothiocyanato-

4-methylpentane-1,5-diyl) bis(1,2-

dimethoxybenzene) named by ChemDraw 

or 4-[5-(3,4-dimethoxyphenyl)-2-

isothiocyanato-4-methylpentyl]-1,2-
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dimethoxybenzene as a preferred IUPAC 

name by MarvinSketch. 

Compound (3) was synthesized from 

compound (2) using a one-pot reaction 

method. This kind was reported as more 

efficient because it does not go through the 

stages of thiosemicarbazide compounds 

forming [30,33]. The resulting compound 

(3) was a light brown solid phase (0.2769 g, 

yield 22.47 %). The Rf of compounds (2) 

and (3) reached 0.175 and 0.775, 

respectively, identified using n-hexane: 

ethyl acetate =3:1 (v/v) as eluent.  

The infrared spectrum of compounds (2) 

and (3) was laid in Table 1. Comparing 

these compounds shows that compound (3) 

has absorptions at wavenumbers around 

3200 – 3500 cm˗1, which were predicted for 

free -NH absorption. Vibrations of C-N and 

C=N were very difficult owing to their 

probability of mixing with several bands. In 

the present compound, the wavenumber 

1515 cm ˗1 was predicted as C=N 

absorption from thiourea [43,44]. The new 

compound formation was also supported by 

the loss of wavenumber absorption at 2049 

cm ˗1, indicating that the double bond C-

isothiocyanate was changed into C-N 

single bonds.  
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Figure 1. Structure of (a). MIE, (b). ME, (c). cinnamaldehyde, (d). thiourea, urea, (e) – (h). inhibitors of 

PfPMII and PfPMX [22,23,28,49], and (i). the proposed reaction of compound (3). 
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Table 1. Specific wavenumber profile in MIE, ME, compounds (1), (2), and (3) 

Bond type Wavenumber (cm ˗1) prediction of compounds: 

MIE  ME   (1)  (2) (3) 

C – H (aryl) 2840 - 3100 2900 - 3150 2900 - 3150 2900 - 3100 2900 - 

3150 

C-H (aliphatic) 962 2940 ˗ 2915 2930 2923 2943 

=C-H (Ar) 3083,  

854, 

763 

3083,  

854, 

763 

3170 3163 3323 ˗ 

3488 

C=C (Ar) 1591,  

1514,  

1464 

1587,  

1507,  

1467 

1511 1511 1515 

C=C (vynil) 960-900, 1637 915,  

1597 

- ˗ ˗ 

C-O-C (ether) 1020,  

1250 

1235 – 1195 1020 1018 1169 

C- H (methyl) 1375 - 1300 1300 1300 

CH2 - 1464 ˗ 1424 1460 1463 1500 

C=S - ˗ 750 753 759 

C=N (imino) - ˗ 1600 1614 1515 

-N=C=S - ˗ 2061* 2049 ˗ 

-S-C=N - ˗ 2157* ˗ ˗ 

N-H (amine) - ˗ - ˗ 3400 

C-N (amine) - ˗ - ˗ 1269 

 

 

 

Molecular mass analysis of compound (3) 

was performed using LCMS-MS, 

producing a spectrum with several 

compound areas. One peak abundance (98 

%) was found at 18.09 minutes of 

retention time with parent ion at 740 

(Figure 2). The LCMS-MS spectra 

indicate that compound (3) is a crude 

compound. This crude compound 

prediction correlates with the broad 

melting point of compound (3) between 

157 °C and 167 °C. The proposed structure 

of methyl eugenol cinnamaldehyde 

thiourea (MW=739) is presented in Figure 

2 namely (E)-N-(4-(3,4-

dimethoxybenzyl)-1,7-bis(3,4-

dimethoxyphenyl)-6-methylheptan-2-yl)-

2-((E)-3-phenylallylidene)hydrazine-1-

carbothioamide (ChemDraw) or 1-[1-(3,4-

dimethoxyphenyl)-4,6-bis[(3,4-

dimethoxyphenyl)methyl]heptane-2-yl]-

3-[(E)-[(2E)-3-phenylprop-2-en-1-

yliden]amino]thiourea (preferred IUPAC 

name by MarvinSketch). Synthetic 

thiourea compounds tend to have high 
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molecular masses because the thiourea 

framework has two substituent sites. 

However, despite having a high molecular 

mass, many thiourea derivative 

compounds show good therapeutic and 

biological activity as drug candidates [45–

48]. 

 

Compound (2) is predicted as a methyl 

eugenol isothiocyanate derivative that 

contains 2 (two) methyl eugenol 

molecules. The weak bond in these two 

ME molecules allows protonation and the 

formation of the thiourea derivative 

compound (3) which has 3 methyl eugenol 

molecules. It can be assumed that 3 moles 

of compound (2) produce 2 moles of 

compound (3). In the LCMS-MS spectrum 

of compound (3), the molecular ion m/z 

562 was detected as the suspected 

derivative of compound (3) which 

contains two ME molecules. However, the 

highest percent retention was compound 

(3) with MW 739 and m/z 740. 

In vitro assay of P. falciparum resulted in 

IC50 of compound (3) = 10.19 ppm, which 

means compound (3) is a promising active 

compound against the protozoan 

Plasmodium falciparum. This refers to the 

basic criteria of IC50 by WHO that 

antiparasitic compounds can be grouped 

into four categories, namely not active if 

IC50>50 μg/ml, moderately active at 15 

μg/ml<IC50≤50 μg/ml, active at 5 

μg/ml<IC50≤15 μg/ml and very active at 

IC50≤5 μg/ml [38]. 

Molecular docking analysis has used a 

macromolecule with PDB code 3QS1 

chain A representing Plasmodium 

falciparum Plasmepsin I. This 

macromolecule has four chains (A, B, C, 

and D) figured out in Figure 3a. Receptor 

3QS1 has two residues: GOL and KN-

10006 [49]. Residue KN-10006 or (4R)-3-

[(2S,3S)-3-{[(2,6-dimethyl 

phenoxy)acetyl]amino}-2-hydroxy-4-

phenylbutanoyl]-N-[(1S,2R )-2-hydroxy-

2,3-dihydro-1H-inden-1-yl]-5,5-

dimethyl-1,3-thiazolidine-4-carboxamide 

is an inhibitor that has a large molecular 

mass with several nitrogen and sulfur 

atoms (Figure 1e). Observations on each 

3QS1 chain showed that all the chain has 

an active site, and in this current project, 

the molecular docking process is 

represented only in chain A.  

 

Molecular docking analysis of ligand (3) 

and 3QS1 chain A produced the best 

affinity energy at ˗7.7 Kcal/mol compared 

to ligand (2) and chloroquine (Table 2). 

The complex of malaria receptor (PDB 
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1YVB) and isothiocyanate compounds 

was reported to have better affinities than 

chloroquine [50], it is in line with the 

3QS1-A and 8DSR-B complex. The 

complex pattern of 3QS1 chain A and 

compound (3) can be seen in the insert of 

Figure 4c, whereas the close-up 2D 

interactions and bonding 3D patterns were 

laid in Figure 4a and 4b, respectively. 

Since this current work uses P. falciparum 

3D7 sensitive chloroquine for an anti-

Plasmodium test, docking analysis of the 

chloroquine compound is used as a drug 

standard comparison. Compound (3) does 

not have a high similarity to the standard 

drug structure, however, each chloroquine 

and compound (3) has three nitrogen 

atoms that are assumed to play a 

significant binding in the receptor and 

ligand complex. 

In the complex of 3QS1 chain A and 

ligand (3), there are 8 (eight) types of 

interactions, namely conventional 

hydrogen bonds on ASP32. Carbon 

Hydrogen bond interactions on LEU114, π 

– σ interactions on VAL76, Alkyl and π – 

alkyl interactions on VAL289, LEU291, 

PHE109A, ALA111, MET13, ILE30, 

PHE117, ILE120. Salt bridge and 

attractive charge on ASP215 and ASP32. 

Meanwhile, van der Waals interactions 

occur at ASP290, SER35, ILE300, 

TYR75, SER220, THR218, THR222, 

ILE287, GLY115, VAL12, SER219, 

SER77, GLY217, GLY34, and TYR189. 

All Plasmepsin I binding sites appear to 

play a role in the complex of  3QS1 chain 

A and compound (3), namely ILE30, 

TYR75, SER77, PHE109A, ILE120, 

GLY217, THR218, THR222, ILE300, 

SER219, ILE287 [49]. These include 

ASP32 and ASP215, which form salt 

bridges, attractive charge, and hydrogen 

bonds with three nitrogen-thiourea groups 

in the compound (3). Compared to 

complex 3QS1 chain A and chloroquine, 

there are 3 (three) types of interactions viz 

van der Waals, attractive charge, and alkyl 

interaction.  Van der Waals on MET13, 

ILE30, ILE120, GLY217, SER77, 

THR218, THR222, VAL76, ILE300, 

GLY34, TYR75, PHE109A, ALA111 and 

PHE 117. However, ASP215 and ASP32 

in 3QS1-A only interacted with one 

nitrogen-chloroquine by attractive charge 

(Figure 4d-4f). This indicates that 

molecule (3) is a potent anti-plasmodial 

compound through the food vacuole 

inhibition pathway, which will inhibit 

parasite growth in erythrocytes.  

Molecular docking analysis was also 

carried out using a macromolecule with 
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PDB code 8DSR chain B, which 

represents Plasmodium falciparum 

Plasmepsin X (Figure 3b). Observation in 

this macromolecule reveals that 8DSR has 

two chains (A and B) and one KWU 

residue on each chain. KWU residue or 

(2E,6S)-6-{2-chloro-3-[(2-

cyclopropylpyrimidin-5-

yl)amino]phenyl}-2-imino-6-methyl-3-

[(2S,4S)- 2-methyloxan-4-yl]-1,3-

diazinan-4-one) is an inhibitor that has a 

relatively large molecular weight and 

contains several nitrogen and chlorine 

atoms (Figure 1f). Analysis of the 

molecular docking of ligand (3) and 8DSR 

chain B produces better affinity energy 

with a value of ˗7.6 Kcal/mol compared to 

ligand  (2) and chloroquine, which have 

affinity energy of ˗6.5 Kcal/mol and ˗6.1 

Kcal/mol, respectively (Table 2). The 

appearance complex of 8DSR chain B and 

compound (3) are presented in the insert of 

Figure 5c and zoomed-in as a 2D and 3D 

interaction pattern (Figure 5a-5b). 

In the complex of 8DSR chain B and 

ligand (3), there are 8 (eight) types of 

interactions, namely van der Waals 

interactions, attractive charge, carbon-

hydrogen bonds, conventional hydrogen 

bonds, π–σ interactions, π–alkyl, π–anion, 

and π–sulfur interactions. The 8DSR 

active site was located on ASP457, 

ASP266, and THR460 [28]. The 

observation results show that ASP 457 and 

ASP266 interact via attractive charge and 

π–anion interaction with one Nitrogen 

atom and aromatic in compound (3), while 

THR460 forms a conventional hydrogen 

bond with Oxygen - methoxy in the methyl 

eugenol group. In the complex of 8DSR 

chain B and chloroquine, there are 8 

(eight) types of interaction viz van der 

Waals, attractive charge, conventional 

hydrogen bond, π-anion, π-sigma, π-π T-

shape, alkyl and π-alkyl interactions. Only 

two of the 8DSR active residues were 

inside this complex. Direct interaction 

only occurs between ASP266 and one 

Nitrogen-chloroquine in an attractive 

charge and π-anion types. THR460 residue 

lies around the chloroquine as a van der 

Waals bond (Figure 5d-5f). This indicates 

that molecule (3) has the potential as an 

anti-Plasmodium compound through the 

maturase inhibition pathway for rhoptry 

and microneme proteins. 
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Figure 2. LCMS-MS spectrum of compound (3). 
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Figure 3. Plasmodium falciparum: (a). 3QS1,  (b). 8DSR. 

 

 

 

 

Table 2. Binding affinities 

Complex: Binding Affinity (Kcal/mol) 

3QS1 chain A and chloroquine ˗6.9 

3QS1 chain A and compound (2) ˗7.1 

3QS1 chain A and compound (3) ˗7.7 

8DSR chain B and chloroquine  ˗6.1 

8DSR chain B and compound (2) ˗6.5 

8DSR chain B and compound (3) ˗7.6 
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Figure 4. The zoomed-in view of 3QS1 chain A and ligand (3) in (a). 2D interactions, (b). 3D binding pose,  

(c). complex of 3QS1-A and ligand (3).  A close-up view of 3QS1 chain A and chloroquine in (d). 2D 

interactions, (e). 3D binding pose, (f) complex of 3QS1-A and chloroquine. 
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Figure 5. The zoomed-in view of 8DSR chain B and ligand (3) in (a). 2D interactions, (b). 3D binding 

pose, (c). complex of 8DSR-B and ligand (3). A close-up view of 8DSR chain B and chloroquine in (d). 

2D interactions, (e). 3D binding pose, (f). complex of 8DSR-B and chloroquine. 
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DISCUSSION 

Thiourea and urea have a similar structural 

framework (Figure 1d), with differences in 

the sulfur and oxygen atoms [51]. Thiourea 

compounds are generally synthesized by 

forming isothiocyanate compounds 

(N=C=S), although the thiocyanate 

compounds have the potential to form. The 

first stage reaction between isothiocyanate 

and hydrazine compounds will produce a 

thiosemicarbazide derivative, whereas the 

second stage reaction between 

thiosemicarbazide derivative compounds 

and compounds containing aldehyde 

groups will produce a thiosemicarbazone 

derivative. These two reaction stages can 

be reduced to one step using the one-pot 

reaction method to create a thiourea 

derivative known as the thiosemicarbazone 

compound [34]. 

In this current work, the synthesized 

thiourea derivatives by the first-stage 

reaction to MIE isothiocyanate (compound 

1) and ME isothiocyanate (compound 2) 

was forming. However, because compound 

(1) has a thiocyanate wavenumber and gave 

a low yield, only compound (2) was used 

for the second-stage reaction. 

Cinnamaldehyde (Figure 1c) is used as the 

aldehyde compound provided. The one-pot 

reaction between compound (2), hydrazine, 

and cinnamaldehyde produces a 

thiosemicarbazone derivative compound 

(compound 3) that the structure proposed in 

Figure 2. 

The synthesis of thiourea derivatives via 

the isothiocyanate synthesis route using 

ME as renewable starting materials has 

been successfully carried out. Synthesis 

product analysis and bioactivity tests 

support the use of this compound as a future 

anti-Plasmodium alternative. The difficulty 

of separating isothiocyanate precursor 

compounds can be overcome by forming 

thiourea derivatives for further purification 

processes. It is important to note that this 

compound has a high Molecular Weight 

(MW); therefore, synthesis reaction 

conditions are necessary to consider to 

prevent the polymerization process, and 

hopefully, a low molecular weight of 

thiourea derivative will be obtained. 

 

CONCLUSION 

The thiourea derivative (compound 3) 

based on methyl eugenol and 

cinnamaldehyde was synthesized using the 

one-pot reaction method. This method was 

carried out by forming a methyl eugenol 

isothiocyanate derivative compound (2). 
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The spectral analysis predicted that the 

product formed was the polymerization 

result of methyl eugenol cinnamaldehyde 

thiosemicarbazone. Compound (3) had 

active potency against Plasmodium 

falciparum 3D7. Molecular docking study 

through 2D and 3D observations got an 

insight that ligand (3) is an anti-

Plasmodium compound through the food 

vacuole and the maturase inhibition 

pathways for rhoptry and microneme 

proteins. 
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