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  ABSTRACT 

Erythropoietin (EPO) is one of the most important hormones in the human body, due to its effective 

pharmaceutical performance, recombinant human EPO (rhEPO) is often produced by Chinese 

Hamster Ovary (CHO) cells as host cells through recombinant DNA technology on an industrial 

scale. In this study, the reported genome-scale metabolic network of CHO cells was upgraded to 

integrate EPO production pathways using the INIT algorithm in the RAVEN Toolbox. After 

quality analysis for the reconstructed model, performance of the model was examined under two 

different culture conditions provided within the literature. Such analysis were implemented 

through Flux Balance Analysis (FBA) and Multi-objective Analysis techniques and the results 

highlighted the effectiveness of these culture conditions. To enhance the efficiency of rhEPO 

production, analysis of essential genes and reactions, sensitivity of essential amino acid 

supplementation and flexibility of amino acid uptakes was also performed through a series of 

standard in silico techniques in constraint-based analysis.  
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INTRODUCTION 

Erythropoietin (EPO) is a hemopoietin 

hormone which is secreted by liver in fetus 

or by kidney in adults, in response to a low 

hematocrit or hypoxia in the bloodstream. 

EPO is used as a therapeutic agent in the 

treatment of conditions in which the normal 

secretion of the hormone is limited because 
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of kidney damage [1]. It plays an important 

role in producing Red Blood Cells (RBCs) 

and is a secretory glycoprotein belonging to 

a large family of the growth factor proteins 

[1,2]. When an adult suffers from cellular 

hypoxia, EPO is secreted by kidney cells as 

a stimulant to increase the production of 

RBCs in the bone marrow until the oxygen 

concentration in the target cells or tissues 

return to normal level by the circulatory 

system [1]. Due to the key role of EPO in 

response to hypoxia, since 1989, the Food 

and Drug Administration (FDA) has 

licensed the clinical use of recombinant 

human EPO (rhEPO) to treat the anemia in 

Chronic Kidney Disease (CKD) [1,3,4]. 

Nowadays, rhEPO is known as a 

performance-enhancing drug [5] because it 

is beneficial not only in the treatment of 

CKD but also for other diseases, including 

anemia in myelodysplasia [6] and anemia 

in cancer chemotherapy and radiation [7]. 

In recent decades, the advances in 

recombinant DNA technology have 

provided to produce exogenous rhEPO, 

called Erythropoiesis-Stimulating Agents 

(ESAs), in cell cultures [8]. 

Selection and preparation of a right host for 

appropriate cell culture is the first and most 

important step to achieve high quality and 

efficient yields of ESAs. Human genes 

related to recombinant therapeutic proteins 

are commonly duplicated and replicated 

into cell cultures created by mammalian 

cells due to their high productivity and 

capability for producing biopharmaceutical 

products [9]. Mammalian cell lines have 

been extensively used for the production of 

complex therapeutic proteins and 

monoclonal antibodies due to their ability 

to properly glycosylated recombinant 

proteins of human or mammalian origin. 

Chinese Hamster Ovary (CHO) cells are 

one of the achievable mammalian cell lines 

that are frequently used as the commercial 

host cells for significant production of 

ESAs on an industrial scale [2,8,9,10]. 

Epoetin alfa and Epoetin beta are two anti-

anemic agents obtained from CHO cell-

derived rhEPO that are often used to treat 

anemia arising from CKD and cancer 

chemotherapy and radiation [8]. 

Meanwhile, CHO cell growth has met 

severe problems in bioreactors due to the 

non-optimal growth conditions of the cells 

in the bioreactor. A mixture of essential 

growth factors has to be added to the cell 

cultures to ensure survival and growth of 

these cells as well while enhancing 

efficiency of rhEPO biosynthesis [11]. 

Accordingly, careful adjustment of 

exogenous growth factors in bioreactors is 



Sardari et al.  Erythropoietin in silico analysis  

92 
HBB. 7(1): 90-114 

 

a significant problem for scientists to 

acquire optimal growth conditions [12]. 

CHO cell growth depends on the 

concentrations of nutrients added to the 

culture medium [11,13]. Among main 

nutrients, amino acids play a fundamental 

role in synthesizing peptides, proteins, 

DNAs, and RNAs within the cell [14]. 

Generally there are twelve amino acids 

which can be regarded as essential: 

Arginine (Arg), Cysteine (Cys), Isoleucine 

(Ile), Leucine (Leu), Lysine (Lys), 

Methionine (Met), Phenylalanine (Phe), 

Histidine (His), Threonine (Thr), 

Tryptophan (Trp), Tyrosine (Tyr), and 

Valine (Val), which all are L-amino acids 

[14,15]. However, CHO cells need the nine 

amino acids His, Ile, Leu, Lys, Met, Phe, 

Thr, Trp and Val as nutrients, because they 

cannot be synthesized by these cells [14]. 

In addition to the effect of specific amino 

acids on CHO cell growth, their amounts 

also affect the quantity and quality of EPO 

production [11]. 

It is well known that in silico modeling 

methods are reliable tools to predict and 

design the required conditions for optimal 

cell growth [16]. Nowadays, the 

development of mathematical methods has 

been facilitated to simulate the genome-

scale metabolic networks of cellular 

metabolisms. Metabolic Flux Analysis 

(MFA) [17,18,19] and Flux Balance 

Analysis (FBA) [20,21] are two of these 

mathematical methods which are widely 

used for modeling metabolic networks 

containing metabolites and enzymatic 

reactions. 

The first genome-scale metabolic network 

of CHO cells, comprising 1302 metabolites 

and 1540 reactions, was reconstructed [22] 

by adapting the existing metabolic model 

for mammalian cells [23]. Since CHO cell 

lines are also the host cells to produce the 

recombinant monoclonal antibody (IgG) 

[24], cell biomass and IgG manufacture 

equations were included within this CHO 

metabolic model as well [22]. Additionally, 

the mathematical model of rhEPO 

biosynthesis reaction was developed by 

including EPO production equation into the 

CHO metabolic network model by 

applying the MFA method [25]. 

To simulate human cellular metabolisms, a 

wide range of computational methods have 

been developed to reconstruct the tissue-

specific metabolic networks for different 

types of human cells [26]. Integrative 

Network Inference for Tissues (INIT) is 

known as a powerful approach to 

reconstruct the Genome-scale Metabolic 
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models (GEMs) by analyzing the cell-type-

specific data obtained from the Human 

Proteome Atlas (HPA) as the main source 

of evidence [27]. The INIT algorithm is an 

implementation of a Mixed Integer-Linear 

Programming (MILP) problem which use 

the Human Metabolic Reaction (HMR) 

database to construct template human 

metabolic model as well as applies 

available protein sequences in the HPA 

database to generate template human 

enzyme model as its input data. In a high 

quality model derived from this algorithm, 

all reactions can carry a flux and the 

synthesis of most metabolites becomes 

possible [27]. The RAVEN 

(Reconstruction, Analysis, and 

Visualization of Metabolic Networks) 

Toolbox is usually used to reconstruct the 

tissue-specific metabolic models in the 

framework of the INIT algorithm [28]. The 

RAVEN Toolbox is a complete software 

suite to generate, analyze, simulate, 

visualize, and run the GEMs within 

MATLAB, Mathworks. In order to apply 

biochemical constraints to the 

mathematical scaffold of the GEMs, 

Constraint-Based Reconstruction and 

Analysis (COBRA) methods are developed 

as a Toolbox within MATLAB [29]. FBA 

is the oldest COBRA method that is widely 

utilized for modeling cellular metabolisms 

[30]. However, there is an ever-growing 

trend in development and improvement of 

these methods [31]. 

In this study, the primary objective is to 

upgrade the genome-scale metabolic model 

of CHO cells with the capability of EPO 

production. After sufficient analysis of the 

quality of the reconstructed model, the 

performance was evaluated under two 

already mentioned culture conditions. 

Besides, the reactions that may raise or 

limit the EPO synthesis were identified and 

the performance of CHO cells in the trade-

off between cell growth and EPO 

production was also evaluated. Then, the 

effect of the type and amount of amino 

acids on CHO cells expressing EPO will be 

investigated by a series of in silico 

modeling to investigate the physiology of 

CHO cells producing EPO. 

MATERIALS AND METHODS 

Upgrading CHO GEM  

A generic metabolic network of CHO cells 

has been previously reconstructed and 

represented. The first version of the high 

quality model was released in 2012 by 

adapting a reconstruction of the metabolic 

network of CHO based on genomic and 

literature data which the model contains 
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1065 genes, 1545 metabolic reactions, and 

1218 unique metabolites [22]. This model 

characterizes the CHO cell lines expressing 

recombinant monoclonal antibody (IgG). 

Therefore, in addition to overall metabolic 

reactions, it includes two balance equations 

representing biomass and IgG synthesis 

which both of these reactions mainly 

composed of the biosynthetic precursors 

and relevant cofactors with appropriate 

coefficients that are experimentally 

measured or obtained elsewhere for 

mammalian cells [22]. Meanwhile, 

Fernández and Chico, 2012, performed 

MFA to provide an explicit stoichiometric 

reaction for production of EPO [25]. The 

equation of EPO biosynthesis in the model 

is represented in follow in Eq. 1: 

0.045ALA + 0.029ARG + 0.014ASN + 0.014ASP 

+ 0.010CYS + 0.088GLN + 0.021GLY + 0.005HIS 

+ 0.012ILE + 0.055LEU + 0.019LYS + 0.002MET 

+ 0.010PHE + 0.019PRO + 0.024SER + 

0.026THR+ 0.007TRP + 0.010TYR + 0.026VAL + 

0.143F6P + 0.052G6P + 0.071AcCoA + 0.124UTP 

+ 0.026CTP + 0.026HO + 0.071GTP + 1.480ATP + 

0.026PEP  EPO + 0.030ADP + 0.452P2 + 

0.043MAN + 0.021GLC+ 0.116UDP + 0.071GDP 

+ 0.026CMP + 0.007UMP + 0.071CoA + 

0.043GLUi   Eq. (1) 

Where: F6P: fructose-6-phosphate; G6P: 

glucose-6-phosphate; GLC: glucose; 

MAN: mannose; PEP: 

phosphoenolpyruvate; UMP, UDP and 

UTP: uridine mono-, di- and triphosphate, 

respectively. Standard three-letter codes 

are used for amino acids. The important 

precursors for production of EPO can be 

seen in Eq. (1). In addition, Table 1 

demonstrates the stoichiometry of 

precursors (amino acids, glucose and 

oxygen) to produce 1 mmol biomass and 

1(mmol) EPO. According to the table, 

1(mmol) biomass requires higher 

supplements rather than 1(mmol) EPO 

synthesis. 

The INIT algorithm [27] is used to 

reconstruct the genome scale metabolic 

networks. The INIT algorithm requires a 

connected template human metabolic 

model as input and protein sequences for 

the template models and for the model of 

the organism of interest. This template 

model was generated from the Human 

Metabolic Reaction database (HMR), 

containing the two existing genome-scale 

metabolic models, Recon1 and EHMN, as 

well as incorporating information from 

HumanCyc and KEGG [32]. The HMR 

database has a hierarchical structure in 

which the genes are at the top and are linked 

to information about their tissue specific 

expression profiles reported via BioGPS 

[32]. The protein sequences for the normal 
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liver tissue are provided from Human 

Protein Atlas (HPA) [27].  

In this research, the EPO producing 

reaction is added to the previous CHO 

model using the INIT algorithm to 

characterize the EPO production rate. 

Accordingly, the demonstrative IgG 

synthesis equation is replaced with the 

balance equation of rh-EPO production. 

Then, the consistency of the model was 

analyzed by available tools within the 

RAVEN Toolbox [28].  

Evaluation of Performance of the Model 

The reconstructed model was simulated 

under two different culture conditions by 

the FBA method within COBRA Toolbox, 

MATLAB. The upper bound of target 

fluxes was adjusted according to the default 

values in the initial model [22,25] which 

provides two different conditions that are 

presented in Table 2. The further multi-

objective analysis of the model to 

investigate the behavior of the EPO 

integrated reconstructed model was 

proceeded using ORCA Toolbox within 

MATLAB, 2013 [33]. 

Determination of Essential Genes and 

Reactions 

The gene deletion and reaction deletion 

analysis was performed to realize if 

changing the objective affected the 

essentiality of any of the reactions or genes 

in the model. To model the deletion of the 

reaction r (or deletion of the gene 

associated with reaction r), we added 

another constraint, nr = 0, to the previous 

set of constraints. In three different 

investigations, to calculate the maximum 

growth, maximum EPO-production and 

relative contribution of biomass/EPO 

production (Biomass + 0.98 EPO꞊>), 

constraints for reaction fluxes mentioned in 

1th simulation condition are set on the 

exchange reactions in the FBA model. 

Then, the essentiality of each gene and 

reaction was examined. In our study, 

modeling gene and reaction deletion were 

performed by singleGeneDeletion and 

singleRxnDeletion functions in the 

COBRA Toolbox [35].  

Investigation of Essential Amino Acid  

Next, in order to investigate robustness of 

growth and EPO biosynthesis against 

perturbations in uptake of essential amino 

acids in culture media, the exchange flux of 

each essential amino acids is varied and the 

optimal objective value is calculated as a 

function of this exchange flux. This 

analysis shows how sensitive the objective 

is to a particular exchange reaction. 

Therefore, other exchange reactions are 

fixed according to constraints of the 1st 
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simulation in Table 2 and in two separate 

analyses, the objective function was 

regarded as growth and EPO production, 

respectively. This analysis was performed 

by Robustnessanalysis scripts in COBRA 

toolbox in MATLAB [35]. 

Flux Variability Analysis for Amino Acid 

Reactions 

Moreover, in order to determine the 

optimal window for uptake rate of all 

amino acids, a series of Flux Variability 

Analysis (FVA) was performed. FVA is a 

mathematical tool to find the optimal range 

of each reaction flux while the objective has 

its maximum value [34]. All amino acid 

uptake fluxes were maximized and 

minimized, subjected to the stoichiometric, 

capacity and exchange rate constraints 

(according to conditions of 1st Simulation 

in Table 2) while keeping the objective 

function of previously solved multi-

objective FBA problems at its optimal 

value. The purpose of such analysis is to 

detect amino acid exchange reactions that 

represent higher activities in EPO 

production phenotype. This analysis was 

performed by fluxVariability scripts in 

COBRA toolbox in MATLAB [35]. 

 

 

 

RESULTS 

Automated reconstruction of the GEM of 

EPO-producing CHO cells based on 

protein homology 

The automated reconstruction can lead to 

some loss of control compared to a stricter 

manual, bottom-up approach. It is therefore 

important to identify and fill gaps in the 

model to ensure that the network is 

functioning as required. In a high quality 

model all reactions should be able to have a 

flux if all uptake and excretion reactions are 

allowed and net synthesis of most 

metabolites should be possible (the 

exception would normally be some co-

factors). Gap filling traditionally centers on 

adding reactions in order to able production 

of all precursors needed for biomass 

production. To compare the quality of the 

automatically generated model to a 

manually curated one, some kind of 

reference was needed [32,36]. As all 

models contain errors it would not be very 

relevant to simply compare the similarity 

between the RAVEN Toolbox generated 

model and a previously published model. 

Table 3 presents the number of genes, 

reactions and metabolites for the published 

model in literature (iHepatocytes 2322) 

[32] and the reconstructed model by INIT 

algorithm in RAVEN toolbox. The models 
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are also compared with respect to identical 

genes, reactions and involved metabolites 

which the percent of similarity between the 

two models are 62, 54 and 50, respectively. 

Two models are tested by simulating 256 

different biologically defined metabolic 

functions [36] (for example, the synthesis 

of FAs, amino acids, cholesterol and bile 

acids) that is known to occur in hepatocytes 

using the RAVEN Toolbox. The 

representative results of the simulated 

biological tasks was provided. The results 

revealed that the generated model by us is 

successful in performing biological 

functions as well as iHepatocytes2322 

model.  

In second part of analysis of the 

reconstructed model, reactions present in 

model are classified using Parsimonious 

enzyme usage Flux Balance Analysis 

method by pFBA function in COBRA 

toolbox [37]. It optimizes the growth and 

then minimizes the flux through the model 

and subsequently classifies each reaction 

by how it contributes to the optimal 

solution on 6 classes: Essential ones, pFBA 

optima, Enzymatically Less Efficient 

(ELE), Metabolically Less Efficient 

(MLE), pFBA no flux and Blocked ones. 

The pie plot shown in Figure 1, 

demonstrates the percent of distribution of 

genes reactions in each class.  

Results of Evaluation of Growth and 

EPO Production  

In order to investigate the amino acids 

effects on EPO production by CHO cells, 

Constraint-Based Modeling (CBM) [38] 

had been used as the main framework of 

this study. As described in pervious section, 

the genome scale metabolic network of 

CHO cell is upgraded to synthesize EPO as 

secondary metabolite. To simulate the 

growth or any other objective under 

different culture conditions, constraints for 

reaction flux are set on the exchange 

reactions, while constrains for flux of other 

reactions remained in default values which 

demonstrate the thermodynamic and 

capacity constraint of the reactions [38]. In 

this study, growth and EPO production are 

simulated regarding to two different culture 

conditions in previously published 

researches [22,25] which are already shown 

in Table 2. Thus, upper bounds for uptake 

rates of the supplied nutrient (amino acids, 

glucose and oxygen) are constrained based 

on the mentioned conditions. 

In both simulations, the optimal value of 

growth rate is the same (0.0257 mmol 

gDW-1h-1), whereas the EPO synthesis 

fluxes are different. The computed Flux 
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distribution intervals of EPO are shown in 

Figure 2 for each simulation. Red and blue 

solid lines in this figure show EPO 

production interval computed on the basis 

of the underlying conditions for 1th and 2nd 

simulations of Table 2 when the sole 

objective is maximizing the growth rate. 

Therefore, the solid blue line confirms that 

more flexible EPO synthesis conditions 

occur by application of the first simulation 

conditions. We hence concluded that the 

maximum ability of EPO production 

provided by the conditions applied within 

the first simulation, is almost ten times 

more than that of the second simulation. 

This ability can be interpreted by the proper 

balance in supplying Glucose (GLC), O2, 

and amino acids nutrients.  

Meanwhile, Biotechnological optimization 

of natural product biosynthesis often 

suffers from pathway competition with 

fluxes leading to the biosynthesis of 

biomass components [39,40]. In order to 

assess competition between secondary 

metabolite biosynthesis and biomass 

production for selected key compounds and 

metabolites, Multi-objective analysis has 

been used to calculate Pareto fronts 

between the biomass objective and the EPO 

production objective ([41], [42]). Here, this 

analysis is used to identify theoretical EPO 

production capacity in CHO cells and 

differences in the extent to which biomass 

production competes with EPO 

biosynthesis. Multi-objective analysis 

results in a trade-off between the two 

objective reactions (biomass production 

and EPO production reactions). The 

coefficient lambda (λ) with values between 

0 and 1, is a coefficient assigned for each 

individual objective to adjust the relative 

contribution of each objective in a multi-

objective optimization. Extreme values of λ 

(λ = 0) represents the metabolic state where 

the target metabolite cannot be produced 

and the growth is the sole objective, while 

λ = 1 demonstrate that all metabolic 

resources are devoted to supporting the 

production of a target metabolite. Fixing λ 

to a series of values and maximizing the 

compound objective can produce the points 

of the curve that describe the relationships 

among different objectives. The multi-

objective optimization was performed for 

the two mentioned culture conditions 

depicted in Table 2. Figure 3 displays the 

results of 1th and 2nd simulations. Blue and 

red lines are related to trade-offs between 

growth and EPO formation for 1th and 2nd 

simulations, respectively. 

In two cases maximum growth rates were 

the same (0.0257 mmol gDW-1h-1). To 
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estimate the transition from a biomass to 

EPO-only phenotype, the enforced growth 

rate was stepwise decreased from 100 to 0 

% of the maximum rate, where the EPO 

secretion rate go up to 1.429 (mmol gDW-1 

h-1) in 1th simulation and 0.285 (mmol 

gDW-1h-1) in 2nd simulation when the EPO 

production was the sole objective (100 % 

contribution to the objective function). It is 

observed that the majority of fluxes 

decrease in a transition from the multi-

product synthesis of sole biomass toward 

the sole objective of EPO synthesis. 

Specifically, we observe a decreasing flux 

for 331 reactions (of 1545 total reactions in 

the network, and of 917 minimally required 

reactions for the synthesis of biomass), of 

which 250 reactions attain a zero flux in the 

EPO production-only state. Thus, 1th 

simulation is again identified such that the 

growth and EPO production are in much 

better conditions rather than 2nd simulation. 

The difference between the two 

environments conditions is in glucose and 

amino acids nutrients, these values are 

increased in first simulation and thus, it can 

be concluded that the increase in glucose 

and amino acid supplements has positive 

effect on EPO production. 

Essential reactions and genes 

Table 4 presents the amount of essential 

genes and reactions corresponding to 

different assumed objectives. Among these 

three objectives, the lowest number of 

essential genes and reactions is related to 

the case in which sole objective of the cell 

was production of EPO which these 

reactions are responsible for synthesizing 

amino acids required for biosynthesis of 

EPO. Furthermore, when "Biomass + 0.98 

EPO꞊>" was the objective, the number of 

essential genes and reactions are increased 

compared to wherein the biomass as the 

objective is maximized.  
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Table 1: The computed contribution (stoichiometry, mmol) of amino acids in 1(mmol) biomass 

and EPO synthesis 

Material biomass reaction EPO reaction Material biomass reaction EPO reaction 

ALA 0.403 0.045 LYS 0.304 0.019 

ARG 0.247 0.029 MET 0.152 0.002 

ASN 0.250 0.014 PHE 0.190 0.010 

ASP 0.465 0.014 PRO 0.237 0.019 

CYS 0.079 0.010 SER 0.304 0.024 

GLN 0.276 0.088 THR 0.250 0.026 

GLY 0.412 0.021 TRP 0.026 0.007 

HIS 0.069 0.005 TYR 0.104 0.010 

ILE 0.205 0.012 VAL 0.299 0.026 

LEU 0.417 0.055 GLU 0.654  
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Table 2. The upper bounds of constraint conditions of uptake rate corresponding to two 

simulations of amino acids in CHO cell biomass and EPO synthesis 

 

 

1 GLC is the abbreviation of glucose 

 

 

Table 3: Number of genes, metabolites and reactions in iHepatocytes 2322 and our model 

Reactions# Metabolites# Genes#  

7930 5686 2322 iHepatocytes 2322 

4284 3216 3674 Our Model 

50 54 62 % similarity 

 

 

Material 1th simulation 2nd simulation Material 1th simulation 2nd simulation 

ALA ̶ ̶ LYS 0.014 0.120 

ARG 0.020 0.060 MET 0.006 0.020 

ASN 0.040 0.320 PHE 0.006 0.090 

ASP 0.010 0.010 PRO 0.237 0.050 

CYS 0.005 0.010 SER 0.050 0.050 

GLN 0.067 0.800 THR 0.011 0.040 

GLY 0.000 0.000 TRP ̶ 0.010 

HIS 0.004 0.020 TYR 0.104 0.090 

ILE ̶ 0.060 VAL 0.012 0.050 

LEU 0.016 0.120 GLC1 0.198 8.28 

O2 1.125 0.720    
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Figure 1: Graph shows classification of reactions based on essentiality, optima, Enzymatically Less Efficient (ELE), 

metabolically less efficient (MLE), no flux (zero flux) and blocked ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flux distribution intervals for the EPO synthesis reaction. Solid blue and red lines correspond to EPO 

manufacture intervals on the basis of the underlying conditions of the first and second simulations, respectively, in 

Table 2.  
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Deletion of the essential genes leads to 

zero value of objective. When the growth 

is sole objective, the essential genes are 

related to energy sources, fatty acids, 

amino acids and protein productions 

which are required precursors for biomass 

production. However, when the EPO 

production is the sole objective, the 

essential genes corresponding to the 

pathways of essential amino acids and 

non-essential amino acid biosynthesis 

which are essential for EPO production. 

Finally, regarding to the tradeoff between 

biomass and EPO production 

(Maximization of "Biomass + 0.68 

EPO꞊>"), the essential genes are the 

necessary genes that are vital for both 

objective, separately.  

As the genes are responsible for 

expression of the enzymes related to each 

reaction, the similar conclusion could be 

drawn for essentiality of the reactions. 

Investigation of essential amino acids 

influence 

The main purpose of performing such 

analysis is to investigate the effects of 

uptake rates of essential amino acids (Arg, 

His, Lys, Met, Thr, Tyr, Leu, Val, and Ile) 

on the growth rate and EPO production. 

Figure 4 demonstrates the change in: a) 

EPO synthesis and, b) growth rate with 

respect to changes in uptake rates of 

essential amino acids. The resulting 

graphs for these amino acids are shown 

with the colored lines indicating each 

amino acids (Figure 4a, b).  

The slope of each curve explains the 

sensitivity of the objective function to 

perturbations in the flux of amino acid 

uptake.  In EPO production (Figure 4a), 

MET and LEU have fastest and slowest 

uptake rates, respectively. The uptake 

rates of VAL and THR is of interest, since 

the figure 4a shows that their plot are 

overlapped together and it means their 

similar effect on EPO production. 

Similarly in growth (Figure 4b), THR and 

LEU have fastest and slowest uptake rates, 

respectively. Although, it seems that the 

intervals of uptake rates of amino acids in 

growth case are lower than those in EPO 

production case which means that cell 

culture requires lower amounts of amino 

acids to achieve the optimal cell growth, 

whereas in optimal EPO production the 

cell needs much more quantities of them. 

Additionally, as shown in Figure 4-a, b, 

EPO production is more sensitive to Lys 

than biomass synthesis. It is hence 

expected that the main difference between 

these two objectives arises from the effect 

of lysine uptake. 
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For better comparison of the difference of 

amino acids uptake rates in growth and 

EPO production, the values objective with 

respect to the uptake flux values are 

normalized (maximum value of uptake 

flux become one for each amino acids) and 

the scaled data are depicted in figure 5. 

This representation shows the qualitative 

differences in uptake rates of each amino 

acid for both objectives in one plot, 

independent of the amount of their flux 

values. The solid blue line and the black 

dot-line are corresponding to growth and 

EPO production objectives. Except for 

MET, the uptake rates of each essential 

amino acids are higher for optimal growth 

than those for optimal EPO production. 

This is reasonable, since the cell should 

growth to produce secondary metabolite. 

Therefore, depletion of MET from culture 

media should be inhibited, because cell 

consume it at the same rate for growth and 

EPO biosynthesis.  

FVA of amino acid reactions  

FVA was performed by application of 

exchange constraints according to 1th 

simulation (provided in Table 2) and using 

optimal objectives in transition from 0% to 

100 % EPO production. Figure 6 shows 

the plots pertaining to the optimal window 

of amino acid fluxes during the transition 

from a growth-only phenotype to EPO-

only phenotype for CHO cells capable of 

producing EPO. The shaded areas signify 

the flexibility (range of minimum and 

maximum values) for each reaction fluxes. 

The figures for non-essential amino acids 

display fixed flux values in transition 

states and it means that the biosynthesis of 

non-essential amino acids depend on 

fluxes of essential ones. Regarding the 

results, the conditions in first simulations 

provide the required amount of amino 

acids for this aim. Meanwhile, the 

essential amino acids exchange reactions 

have increased during the transition from 

0 % to 100 % product objective. This 

increase in the fluxes is due to the 

necessity to recycle EPO to the 

metabolism. 
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Figure 3. Trade-off between growth and production for the first and second simulations. 

 

 

 

 

Figure 4. a. Optimal EPO production flux value as a function of the uptake rates of amino acids. b. Optimal growth 

rate as a function of the uptake rates of amino acids. The abbreviations show the supply effect of amino acids, ARG: 

arginine, HIS: Histidine, ILE: Isoleucine, LEU: Lucien, LYS: Lysine, MET: Methionine, PHE: Phenylalanine, THR: 

Threonine, TRP: Tryptophan, VAL: Valine. 
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Figure 5. The normalized curves represent the computed optimal objective value with respect to the uptake rates of 

amino acids. The solid blue line and the gray dot line pertain to the robust curves for the growth and EPO production 

objectives, respectively. The abbreviations show the supply effect of amino acids, ARG: arginine, HIS: Histidine, 

ILE: Isoleucine, LEU: Lucien, LYS: Lysine, MET: Methionine, PHE: Phenylalanine, THR: Threonine, TRP: 

Tryptophan, VAL: Valine. 
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Table 4. Count of essential genes and reactions pertains to the objectives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Objective Objective formula 
Maximum objective 

(mmol gDW-1h-1) 
Item count 

Biomass production biomass꞊> 0.025 

Essential 

genes 
58 

Essential 

rxns 
90 

EPO production EPO꞊> 1.429 

Essential 

genes 
12 

Essential 

rxns 
13 

Biomass + EPO 

production 

Biomass + 0.98 

EPO꞊> 
0.020 

Essential 

genes 
60 

Essential 

rxns 
94 
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Figure 6. Plots show the required amino acid fluxes during the transition from a growth-only phenotype to a 

production-only phenotype for CHO cell producing EPO. The shaded areas demonstrate non-unique solutions (flux 

variability). The label of horizontal axis is flux (mmol gDW-1 h-1).  

 

 

DISCUSSION 

Computational network reconstructions 

and metabolic modeling offers significant 

potential to identify and guide suitable 

culture conditions to improve the quantity 

and quality of recombinant proteins. In this 

research, variety of constraint-based 

analysis methods are used to investigate the 

behavior of Erythropoietin (EPO)-

producing CHO cells and the effect of 

nutrients on the biosynthesis of EPO. Thus, 

the genome-scale metabolic network of 

CHO cell was reconstructed by the INIT 

algorithm in the RAVEN Toolbox to 

upgrade the metabolic network of CHO cell 

expressing EPO. The quality and 

performance of the reconstructed model 

was assessed to prove the applicability of 

this model for the subsequent analyses. To 

simulate the growth and EPO synthesis, the 

reconstructed model was subjected to FBA 

and Multi-objective analysis, constrained 

under two culture conditions extracted 

from the literature. Both conditions have 
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the same effect on growth, while the 

condition with higher amount of amino 

acids and glucose leads to more EPO 

production, therefore, the amount of 

essential amino acids and glucose have 

direct effect on the amount EPO synthesis. 

Next, the essentiality of gene and reactions 

of the model was assessed which 

demonstrates that the integration of EPO 

pathways requires more gene and reactions 

besides the growth-leading essentials.  

 

CONCLUSION 

 Regarding the influence of amino acids in 

both growth and EPO biosynthesis, the 

sensitivity of essential amino acids and the 

flexibility of amino acid reactions was 

addressed which the results highlighted the 

more effective amino acids in growth 

versus EPO biosynthesis in addition to 

providing optimal window for 

supplementation of amino acids within 

culture media.  
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