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  ABSTRACT 

Structural bioinformatics and computational methodologies facilitate antibodies design. The 

rational design is used to achieve a new function or adopt a new structure. Computer algorithms 

can systematically search amino acid sequences and select the best one. One of the important points 

of protein therapeutics is utilizing as drug. The present study reviewed recent studies about 

antibody design, antibody structure modeling, antibody prediction, and stability, pharmacokinetics 

and recent algorithms used in antibody design. By advanced technology with computational 

technologies development of therapeutics antibodies is possible. In early stages, several methods 

of predicting protein structure and de novo protein design were presented. 

Keywords: Antibody design; nano-carriers; pharmacokinetics property; docking; algorithms  

 

 

INTRODUCTION 

Cancer is the main wellbeing issue all around 

the world, and the relevant statistics show 

one in four deaths in the United States due to 

cancer [1]. In 2030, it is predicted that the top 

three cancers for men consist of prostate, 

lung, and melanoma, and for women, breast, 

lung/bronchus, and colorectal [2]. Immune 

system (innate and acquired immunity) main 

function is target cancer cells and infectious. 

The first barrier in the immune system is 

physical which protects the body from 

foreign agents. If the innate immunity has not 

been able to protect the body, the adaptive or 
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acquired immunity will act using T and B‐

cells [3].  

IgG structure 

IgG is a basic format of antibody which is 

generally utilized in all approved antibodies. 

Two light chains and two heavy chains 

altogether construct IgG structure. The most 

common therapeutic antibodies are IgG1 

isotypes since compared to other 

classes/subclasses; not only has a long half-

life in serum, but also the effector function is 

stronger. Antigen interacts with antibody via 

VH and VL (Variable) domains; this 

interaction mostly formed by 

Complementarity Determining Regions 

(CDRs); for contacting small targets to 

antibody two to three CDRs are involved, 

while for larger proteins, four to six CDRs are 

involved. In other words, the combination of 

CDR loops depends on the size of the antigen 

[4]. Opsonization, cell lysis, mast cells’ 

degranulation, and eosinophils to antigen 

recognition are some other functions of the 

Fc” region [5]. These days, plenty of research 

projects have centered on antibodies to 

develop drugs and vaccines as particular 

tools in treating certain malignancies and 

significant applications in biotechnology [6, 

7]. The number of therapeutic antibodies 

confirmed by the Food and Drug 

Administration (FDA) is about 25; however, 

approximately one thousand in development 

have entered clinical trials within the last 

decade [8]. Several notable Clinical trials 

therapeutic antibodies are highlighted 

(Supplementary data S1). Some successful 

antibodies to treat patients who suffer from 

cancer involve the antibodies against CD20 

(Ocrelizumab) [9], Her2/neu (Herceptin/ 

Trastuzumab) [10], Epidermal Growth Factor 

Receptor (EGFR) (Cetuximab) [11], and 

Vascular Endothelial Growth Factor (VEGF) 

(bevacizumab) [12]. 

Antibodies which are developed by new 

technologies may have been effective agents 

for treating various diseases. Various 

methods are accessible for engineering high-

affinity antibody which both biophysical 

properties and the same biological function 

are being considered [13]. 

As an example of drug, Doxil® has been 

confirmed in the USA and Europe that is the 

drug doxorubicin encapsulated in PEG-

liposomes and suitable for the treatment of 

AIDS-related Kaposi’s sarcoma, ovarian and 

breast cancer [14]. 

Strategies in engineering monoclonal 

antibodies (mAbs) 

Improving pharmacokinetics and 

immunogenicity properties are the goal of the 

engineering antibody for therapeutic 

purposes. Antibody properties such as 
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epitope binding, target affinity, 

pharmacokinetics, function and 

immunogenicity level [15] are enhanced by 

antibody engineering and optimization 

technologies.  

Limitation of natural antibodies 

Short half-lives (typically less than 20 h), 

inefficient immunogenicity, and effector 

functions are some of the major constraints of 

native antibodies. Inefficient effector 

functions can be solved by increasing the 

efficacy of antibodies, by combining 

antibodies treatment with chemotherapy, so it 

would be beneficial for treating patients. 

Therefore, antibody design strategies 

emerged to overcome these challenges [16]. 

Animal immunization is a routine method to 

discover and optimize antibodies, while this 

is time-consuming, expensive, and may not 

produce desirable antibodies. Undoubtedly, 

antibodies which are present in PDB do not 

attach to a desirable epitope with high 

efficiency, but they are practical for 

crystallography. Therefore, they are 

beneficial in antibody design to optimize 

sampling and scoring, raising the 

improvement of CDR lengths, clusters, and 

sequences [17]. 

Antibody design 

The antitumor activity of engineering 

antibodies enhances; hence it improves 

therapeutic effects by little dosage [18]. To 

model molecular behaviors, computational 

antibody designs, algorithms, and molecular 

mechanics force fields are accessible. 

Rational design, structure-based design, 

protein design algorithms, and antibody-

specific modeling techniques are some kinds 

of computational methods [19-21]. These 

methods have been utilized to improve 

stability [22,23], optimizing affinity [24,25], 

and humanizing antibodies [26,27]. Hence, in 

silico molecular modeling techniques 

emerged [28] with viscosity and phase 

separation properties [29].  

Computer-based strategies 

Energy functions which describe the 

biological system and conformational 

sampling in computational simulations, are 

two important factors for binding affinity 

prediction based on structure. Antibody 

design based on the structure has been rapidly 

noted due to development in algorithms and 

computational power [30]. Maturation of the 

antibody and design of the antibody with 

affinity enhancement would be effectively 

possible with the help of designing strategies. 

Mutants around CDR loops are the tool for 

the estimation of binding affinity without 

contact with an antigen. For estimating 

binding affinity, Lippow et al. in 2007 

designed a two-stage procedure so that 

conformational search is performed by 



Sardari et al.  Design of antibodies for cancer  

75 
HBB. 5(3): 72-96 

sampling side-chain rotamers separately 

applying dead-end elimination with a 

physics-based energy performance.  

The lowest-energy structures is another 

factor assessed by some more computational 

models involving poisson-Boltzmann 

continuum electrostatics, continuum solvent 

van der Waals, unbound state side-chain 

conformation search and minimization. 

Besides, by handling several experiments on 

free energy in the first design on anti-hen 

egg-white lysozyme antibody D1.3, Lippow 

et al. confirmed that the computed 

electrostatic for binding was better to predict 

affinity compared to total computed binding 

[24]. Furthermore, by helping computational 

modeling, Barderas et al. in 2008 increased 

the affinity of human anti-gastrin TA4 scFv 

from 6 µM to 13.2 nM [25]. 

For computational docking, understanding 

interacting partner structures is important; 

and as monomers structures are not present in 

all cases, it requires to utilize homology 

modeled structure for one or all partners 

[31,32]. The exact prediction of protein-

protein complex structures is a major 

challenge; thus, new docking algorithms 

obtain the necessary degrees of freedom for 

fault compensation. It is notable that by 

homology modeling technology, several 

successful therapeutic antibodies involving 

Zenapax (humanized anti-Tac or 

daclizumab), Herceptin (humanized anti- 

HER2 or Trastuzumab), and Avastin 

(humanized anti-VEGF or bevacizumab) 

arrived in market [33]. High-resolution 

computational docking is applicable in 

antibody designing due to the knowledge of 

complex interactions between antibody and 

antigen [34].  

Although the flexible docking algorithms are 

not present for antibodies, several relevant 

modes of internal flexibility through docking 

approaches were combined [35,36]. Multi-

body docking was developed for optimizing 

assembly of VL, VH and antigen, which 

targets blind prediction challenge known as 

Critical Assessment of Prediction of 

Interactions (CAPRI) [37-39]. 

It was considered that homology modeling 

combined with knowledge-based and energy-

based methods can create more reliable H3 

loops [40]. Rosetta antibody combined with 

homology and ab initio modeling can make a 

primitive homology model by choosing 

various templates for frameworks and non-

H3 CDRs, modeling H3 loop and optimizing 

the variable domain of heavy and light chains 

interface using ab initio approaches [41,42]. 

Strategies in the development of fully 

humanized therapeutic antibodies 

Two common molecular engineering 

processes for therapeutic purposes are the 
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humanization of mouse antibody [16,43]. 

Antibody humanization is beneficial for 

producing a molecule with minimal 

immunogenicity, while the specificity and 

affinity of parental non-human antibodies 

have remained. In 1989 Zenapax® (generic 

name: Daclizumab), the first FDA approved 

humanized antibody for therapeutic 

utilization in the transplantation and 

treatment of asthma, autoimmunity, 

inflammation, and multiple sclerosis, was 

introduced by Queen et al.  First of all, the 

human Framework Regions (FRs) were 

selected to maximize homology with the 

murine antibody sequence. Then, aiding the 

computer modeling, some murine amino 

acids outside the CDRs were identified to 

interact with the CDRs or antigen to improve 

the humanized antibody binding [44]. Murine 

antibodies were originally obtained by mice 

or rats immunization; then, hybridoma 

technology was used [45]. A chimeric 

antibody is achieved by the graft of variable 

mouse domains of antibody (mAb) to 

constant domains of human [46,47]. Next 

phase was emerged by grafting the antigen-

binding loops or CDRs from a mouse to a 

human IgG [43,48]. If some residues from the 

FRs of mouse parents are conveyed, 

humanized antibodies would be improved 

[49]. Human antibodies that are acquired 

from single-chain variable fragments or Fab 

phage display libraries have a high affinity 

[50-52]. Due to the improved affinity of 

human antibodies, they contain most of 

human immunoglobulin genes [53,54].  

Docking methods 

Combining the gold standard of docking with 

standard Rosetta Dock results in the lowest 

interface-energy of targets by adding the 

degrees of freedom to Snug Dock protocol, 

the chance of successful prediction is 

dramatically increased. Paratope structural 

optimization in docking to compensate for 

the antibody homology model errors is a 

function of SnugDock. In this algorithm, the 

position of antibody-antigen rigid-body and 

the light and heavy chain orientation of 

antibodies were optimized. The combination 

of Ensemble Dock and Snug Dock [55] 

protocol for homology modeling has the 

same numbers of targets with acceptable 

predictions as the standard Rosetta Dock 

using for crystal docking. In general, the 

results show that the target’s flexibility can 

conquer inaccuracies in homology modeling, 

leading to higher accuracy in docking [55].  

Grafting antibody components together and 

modeling H3 loop could be done by the Web 

Antibody Modeling server (WAM) as a 

source of homology modeling. Snug Dock is 

responsible for compensating model errors 

during docking; the results of using Snug 
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Dock accompanied by WAM models are 

compared to those of Rosetta antibody 

models. So, higher accuracy will be obtained 

by applying Ensemble Dock-plus-SnugDock 

with Rosetta antibody [55]. By increasing the 

degree of freedom in local docking, 

computational algorithms prediction quality 

will be improved. As a result, by utilizing 

Ensemble Dock-plus-Snug Dock with 

homology models, high accuracy can be 

achieved compared to docking crystal 

structures with standard Rosetta Dock. 

To dock the antibody on the antigen epitope 

is one issue in antibody modeling. The 

complementary between antibody and 

antigen is not determined well due to epitopes 

and paratopes being typically flat. In 

comparison to RosettaDock algorithm [56], 

SnugDock [55] applied alternating rounds of 

the low-resolution rigid body, high-

resolution side-chain, and backbone 

minimization to make an antibody-antigen 

model complex. The protocol depends on the 

random deviation to get minimum energy, 

with a strong energy funnel and a low RMSD 

compared to the native one [56]. 

Affinity and specificity enhancement 

Antibody-antigen interactions are significant 

to design antibodies with high specificity and 

affinity. Various studies showed the three 

largest amino acids’ distribution in epitope 

and paratope consists of tyrosine, glycine, 

and serine [57,58]. These amino acids 

improve low affinity binding of naive germ 

line antibodies, enabling them to be affinity 

maturated [59].  

Antibody-Dependent Cell Cytotoxicity 

(ADCC) and CDC were proposed as the most 

significant mechanisms of therapeutic 

antibodies. These functions operate during 

the interaction of Fc domain with FcγRIIIa 

for ADCC, C1q for CDC, and neonatal Fc 

receptor for prolongation of clearance rate 

[18].  

Three methods for in vitro affinity maturation 

and producing antibody variants are 

accessible that involve: random mutagenesis, 

targeted mutagenesis, and shuffling 

approach. E. coli mutator bacterial strains, 

error prone PCR, or saturation mutagenesis 

are applied in random mutagenesis method. 

Two instances of this method are 

Ranibizumab on VEGF by humanized Fab 

format and L19 on EDB fibronectin domain 

by humanized diabody format [60-62]. 

Alanine-scanning or site-directed 

mutagenesis, like look-through mutagenesis, 

is utilized in targeted mutagenesis. Synagis 

on RSV F protein by humanized IgG format, 

DX-88 on Plasma kallikren and DX-890 on 

Neutrophil elastase by small recombinant 

protein format are the instances of site-
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directed mutagenesis [63]. The shuffling 

method involves light chain or CDR 

shuffling [64-66]. IMC-A12 on IGF-1R by 

fully human IgG format is an instance of 

Chain shuffling [67]. With the use of display 

technologies including phage display, a high 

affinity antibody is obtained. Furthermore, 

various sorts of display methods were applied 

like ribosome display, yeast surface display, 

E. coli surface display and mRNA display 

[68,69].  

Enhancing antibody-antigen binding 

affinities is feasible by in silico mutations on 

the residues of antibody by the use of the 

three-dimensional structures of antibody-

antigen complexes [70]. Several various 

methods are used for antibody’s affinity 

enhancement derived from phage antibody 

libraries, involving error-prone PCR [71], 

CDR walking [72], hot-spot mutagenesis 

[73], and parsimonious mutagenesis [74]. To 

speed up and direct the maturation process, 

these methods are nowhere near as efficient 

as rational approaches. 

Glycosylation as a strategy to improve 

therapeutics antibody  

The majority of marketed therapeutic 

antibodies are glycoproteins. Glycosylation 

is considered as a process in which the 

oligosaccharide is covalently graft to either 

side chain of asparagine or serine/threonine. 

For recognition, signaling, and interaction 

events, the oligosaccharide part of antibody 

is required, which is beneficial in folding and 

defining protein conformation [75]. 

Producing human therapeutic glycoproteins 

has some benefits involving faster 

development and low-cost 

biopharmaceuticals. For instance, human IgG 

and rat Erythropoietin (EPO) were 

completely functional by expression in a 

glycoengineered Pichia pastoris yeast 

system [76,77]. These improvements arise 

from N-linked and/or O-linked glycosylation 

influence activity, pharmacokinetics, 

clearance, and immunogenicity of drugs [78]. 

Most current therapeutic antibodies are 

fucosylated, although de-fucosylated 

antibodies have some advantages [95].  

Variable domain orientations in antigen 

receptors 

The affinity and specificity of an antibody are 

two significant antigen-binding properties, 

and by engineering these properties, an 

improvement in the quality of therapeutic 

antibodies is achievable. Variable regions of 

antibody and T-Cell Receptors (TCRs) 

identify their desired antigens in dissimilar 

methods. Antibodies bind to a various 

collection of antigenic shapes, while TCRs 

binds only to peptide antigens presented by a 

Major Histocompatibility Complex (MHC). 

However, they have some similarities in the 
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structure. Like antibodies, TCR binds 

utilizing its variable region involving two 

domains, Vα and Vβ, analogous to antibody 

VL and VH domains [79,80]. 

The orientation of variable domains, VH and 

VL in antibodies, can influence the binding 

site. James Dunbar et al, surveyed the 

corresponding property for TCRs and Vβ-Vα 

orientation compared to natural antibodies 

[19]. The orientation of variable domain 

affects the position of CDR loops, thereby 

affecting the geometry of antigen binding site 

[81,82]. It is shown conformations that are 

present in TCRs and antibodies are specific. 

An antibody binds to a pMHC in a similar 

way a TCR does, and similar conformation 

with certain amino-acids should be achieved 

in antibodies as in TCR. Packing long Vα 

CDR3 in the domain-domain interface is 

considered to be a factor resulting in the 

difference between the TCRs and antibodies’ 

orientation. A similar packing effect can be 

obtained in the antibodies applying a bulky 

residue at IMGT position 50 on the VH 

domain. Other situations are recognized, 

which may aid in enhancing a TCR-like 

orientation in the antibodies. These situations 

must be profitable in engineering therapeutic 

TCR-like antibodies [83]. Considering the 

study of Narayanan et al., the orientation of 

VL-VH significantly affects antigen binding 

attributes of an antibody. They suggested that 

optimizing the orientation of VL-VH and 

antibody-antigen may result in several 

intramolecular alterations [84]. 

Antibody mimetics 

As mentioned earlier, the restriction of native 

antibodies to penetrate solid tumor motivates 

scientists to make smaller alternatives. To 

identify antigens by the whole antibody, all 

six CDR loops in VH and VL are necessary 

[7,85-88]. Although the derivatives of CDR 

sequences are able for antigen-recognition 

[87,89,90], in vivo activity of modified CDR 

antibody mimetics is not reported to be 

desirable. This could be rooted in unsuitable 

CDR modification or lack of spacers among 

CDR derivatives [90,91]. 

Considering the study of Xiao-Qing Qiu et 

al., the fusion of two CDRs, VHCDR1 and 

VLCDR3, with their cognate FRs (VHFR2) 

not only make the mimetics maintain the 

antigen recognition of their parent antibody, 

but also increase its capacity for penetrating 

tumors. It may be suitable to make smaller, 

high-affinity binders of therapeutic value. 

The framework of either VH or VL domain 

orients two CDRs roughly the same as their 

native condition. The suitable orientation of 

VH and VL domains conferred by an FR 

spacer can ensure the retaining partial 

synergic interactions for VH and VL 
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domains. For detecting optimal pair of VH 

and VL domain CDRs with the best keeper 

synergic interactions, they made four 

mimetics based on HB-168, a monoclonal 

IgG against EBV envelope glycoprotein gp 

350/220. In vivo results, including 

distribution and targeted tumor growth 

inhibition, reveal that synthetic VHCDR1-

VHFR2-VLCDR3 mimetic and toxin-

mimetic fusions penetrated and accumulated 

in solid tumors more than the parent antibody 

(this sort of antibody mimetics is displayed in 

Figure 1). Mimetics with no FRs linkage 

could also have some disadvantages like 

VHCDR1-VLCDR3 mimetic and a cyclic 

peptide containing key residues of all six 

CDRs, which lack a quasi-physiological 

linkage among CDR derivatives. This does 

not allow their interaction with antigenic 

epitopes to have a suitable interface. 

 

 

 

 

Figure 1. Fusion of two CDRs, VHCDR1 and VLCDR3. 

 

Fusion proteins called pheromonicins, were 

created by linking the antibody mimetics to 

the bacterial toxin, enabling targeted tumor 

growth inhibition. Based on the results, 

pheromonicins directed against tumor-

specific surface markers penetrate tumors 

more than their parent antibodies [92].  
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The antibody mimetic design is 

problematic when the active region of a 

protein consists of discontinuous segments 

of the polypeptide chain. Some methods 

have been suggested to mimic the 

discontinuous binding surface of a protein 

[110,111]. Rational strategies to design 

‘continuous’ sequence mimetics of 

discontinuous regions of protein have not 

been fruitful so much [112,113]. The 

reason is that the recognition components 

of a mimetic structure are constricted 

compared to conformational and spatial 

orientations witnessed in the parent 

molecule [114]. In the study of Florence 

Casset et al., after synthesizing and testing 

446 combinations of cyclization, the 

ultimate mimic showed great activity. They 

utilized peptide mapping to define active 

antigen recognition residues, molecular 

modeling and a molecular elements 

trajectory analysis so that they can create a 

peptide mimic of an anti-CD4 antibody, 

containing antigen contact residues from 

multiple CDRs. The design was a 27-

residue peptide created by residues from 5 

CDR regions. Consequently, the affinity 

for the antigen (CD4) was 0.9 nM, 

compared to 2 nM for the parent antibody 

ST40. However, the mimetic indicates low 

biological activity in an anti-retroviral 

assay [107]. 

The Algorithms in antibody Design 

Pantazes and Maranas modeled OptCDR 

[94] and OptMAVEn (Optimal Method for 

Antibody Variable region Engineering) 

[94] methods for computational antibody 

design, assemble their structure elements to 

interact with new epitopes. OptCDR 

samples are due to six CDRs groups in the 

existence of a fixed antigen situation. It is 

handled by putting side chains based on 

sequence priority in every cluster, a 

rotamer search from a backbone-dependent 

rotamer library [95], and a CHARMM-

based energy function. The structures of an 

antibody are divided into OptMAVEn with 

V(D) J recombination: antibody heavy- and 

light-chain V regions, CDR3s, and post-

CDR3 elements from MAPS database [96]. 

OptMAVEn is beneficial for de novo 

design of variable regions human antibody 

for interacting with any desired antigen by 

assembly of six best-scored Modular 

Antibody Parts (MAPs) [96]. Considering 

the template, MAPs modeling is done; the 

templates are considered initial structures 

of random Variable (V), Diversity (D), and 

Joining (J) domains in the database, leading 

to gene combinations with the fewest 

amino acids alters from the target [96]. 

After predicting the antibody structure 

successfully, its affinity can be matured 
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using Iterative Protein Redesign and 

Optimization (IPRO) framework. It can 

redesign an entire combinatorial protein 

library in one step utilizing energy-based 

scoring functions. Framework is optimized 

by side-chain substitutions in design 

situations with the use of a mixed-integer 

optimization model. Backbone of protein is 

also adjusted by local minimizations to 

novel side-chains [97]. 

To design antibodies against a hydrophobic 

heptamer peptide antigen with a repetitive 

sequence (FYPYPYA) OptMAVEn can be 

utilized [99]. Lapidoth et al. presented Ab 

Design [99], which is similar to Opt- 

MAVEn, separating antibodies into V 

regions and CDR3, and then categorizing V 

region by the length of CDR1 and CDR2. 

Ab Design combines and designs the 

sequence from position-specific scoring 

matrices of aligned antibody sequences of 

their length-based categories of V regions 

and CDR3 regions. Ab Design is recently 

applied to make antibodies against insulin 

and mycobacterial acyl-carrier protein 

[100]. 

Rosetta Software Suite [30] is one of the 

reliable antibody designs which applied for 

a diversity of modeling like loop modeling 

[101], protein-protein docking [98,102], 

structure refinement [103-105], de novo 

protein design [106], enzyme design 

[107,108], and interface design [109,110]. 

Rosetta Software could supply the 

frameworks for sampling and also 

optimizing protein-protein interaction 

conformations. 

RAbD and Ab Design employ clustering 

structural antibody fragments and their 

related sequence to make novel antibodies. 

Moreover, during the design of antigen-

antibody complex, they apply Rosetta 

docking and side-chain repacking. 

Furthermore, they have several significant 

differences; for instance, Ab Design 

isolates every antibody domain into two 

fragments, V region up to CDR3 and the 

leftovers of variable domain up to its C-

terminus. In the present design method, V 

regions merge sequence lengths of CDR1 

and CDR2, which cause issues due to 

several CDR clusters having some residue 

such as glycine in special sites for 

organizing correct loop conformation. 

Thus, Ab Design is not appropriate to 

optimize present antibodies. In contrast, 

RAbD handles every CDR separately and 

samples structures in PyIg classify 

database. CDRs are mixed and matched 

together, and they are grafted onto the 

frameworks of antibody obtained by a user. 

RAbD and Ab Design are performed in 
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distinct ways; Ab Design is not appropriate 

for special issues in antibody design like 

sampling defined lengths of a CDR or 

particular germline or CDR cluster while 

RAbD is a perfect sort of Rosetta 

application [17]. 

The loop length and recognition of key 

residues within or outside CDR regions can 

be predicted for the humanization antibody 

[48]. When non-human CDRs are grafted 

onto human frameworks, antigen-binding 

site conformation could alter; thus, affinity 

antibody–antigen-binding decreased 

[8,111]. When similar sequence motifs are 

found from Protein Data Bank (PDB), the 

structures can be defined [112]. Modeling 

L1, L2, L3, H1 and H2 loops with high 

accuracy can be achieved by identifying 

sequence-structure relationships [113]. 

Having the main role in antigen recognition 

and affinity maturation, they are put in the 

antigen’s binding site. By decreasing the 

computational search space for loop 

modeling, sequence-structure rules for 

CDR-H3 loops may aid solving the 

problem [114]. Gray et al. suggested 

Rosetta antibody for modeling antibodies; 

at first, they modeled CDR-H3 loops, 

assembled fragments and minimizing them 

utilizing Rosetta protocol [115]. Their 

antibody models could apply in 

computational docking methods utilizing 

Rosetta dock [116]. Ten antibody 

homology models for every input sequence 

are produced in Rosetta antibody, and it is 

possible to combine simultaneously by 

Ensemble Dock. Nevertheless, the CDRs 

(H2 and H3) errors of Rosetta antibody 

homology models can still invalidate 

docking [115]. 

 Ab initio approach is a method to 

enumerate feasible loop conformations that 

apply generic Ramachandran to make 

probable backbone conformations. 

Applying CONGEN program in the earliest 

antibody modeling approaches, Martin et 

al. combined database searching and ab 

initio loop prediction [40]. An ab initio 

loop modeling protocol was designed by 

Jacobson et al. They investigate 

conformational space by backbone torsion-

angle sampling by refining energy-based, 

scoring all-atom optimized potentials for 

liquid simulations and solvent model [117]. 

This method can be used for loop modeling 

in the generic proteins [118] and CDR-H3 

modeling [119].  

Despite the difficulty of predicting the loop 

longer than 12 amino acids [120], as the 

conformation can be different according to 

its interactions with antigen or artifacts 

associated with crystal packing, long 
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surface loops in proteins are often flexible 

[121]. Tramontano et al. designed PIGS 

webserver to provide several alternatives 

for light and heavy chains [122]. CDRs 

were created by grafting structures and 

CDR-H3 loops of other antibodies onto the 

modeled framework on this web. Rosetta 

antibody applies a VL/VH docking due to 

the Rosetta energy function and rigid-body 

minimization to refine the orientations 

following CDR-H3 modeling [41,115]. 

Utilizing code is hard, since large 

computational resources are needed and 

servers for most of Rosetta applications are 

inaccessible; applying Rosetta molecular 

modeling software is limited [123]. A 

Rosetta application called ROSIE is an 

improved version of Rosetta platform. The 

main progress in this software is the loop 

modeling utilizing Kinematic Loop Closure 

(KLC) algorithm [101]. CDR-H3 is 

restricted with knowledge-based rules, 

along with an updated version of the 

structural database, prepares better 

templates for VL, VH, and the CDR loops. 

For light and heavy chain, the inputs are 

sequences [124]. The output coordinates of 

FV model antibody, can be applied for 

modeling antibody-antigen complexes by 

EnsembleDock [56] or SnugDock [55] 

(Supplementary data S2). 

CONCLUSION 

Dramatic advancements in high-throughput 

technology combined with computational 

technologies lead to developing 

therapeutics antibody [125-127]. Correct 

prediction of antibody structures from their 

sequences is the main issue; fortunately, 

recent advancement was made through this 

purpose. Predicting antibody–antigen-

binding modes has also produced high 

advancement by computational protein-

protein docking, especially by using 

knowledge of antigen-binding sites and 

experimental data. The exact prediction of 

epitopes and paratopes requires more 

advancement accuracy [24,114]. PDB, 

DIGIT, IEDB, and IMGT are several 

antibody data resources in terms of their 

contents and properties. To know the 

antibody-antigen recognition mechanism, 

to assess the stability and immunogenicity 

of antibody, and to predict 

function/efficacy alter upon modification 

3D structures are required. A small section 

of protein structure space can only solve by 

experimental techniques like 

crystallography and NMR. Moreover, 

developing this space is feasible by 

applying computational approaches 

choosing suitable templates, predicting 

epitope and modeling CDR region by 
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acceptable deviation. Nonetheless, 

combining these computational approaches 

may lead to decrease errors, especially for 

predicting antibody-antigen complex 

structure [128].  

The prediction of protein structures from a 

sequence can be successful if the templates 

can be appropriately determined and 

aligned. Since conformational sampling 

and force fields guiding sampling are not 

perfect, no method is present to predict 

structures template free [129,130]. No 

method is present to score those models 

accurately; it was proposed that all puzzle 

pieces are required to construct structure. 

Despite this, no method can assemble them 

properly in a blind predictive capacity [131, 

132]. Thus, the advancement in force 

fields, the capability for predicting correct 

residue ability, residue contacts, β-sheet 

topologies, alignments to non-homologous 

templates, and efficient conformational 

sampling methods are the main elements to 

solve the problem of protein folding [133].  

If de novo design were completely handled 

by applying computers, it would be 

basically impractical. Therapeutics proteins 

are hindered by proteolytic cleavage, poor 

solubility, and poor permeability. Applying 

Post-Translational Modifications (PTMs) 

and NCAAs can address these issues 

because altered peptides are less likely to be 

identified by proteases, and modifications 

of peptide can be chosen to fine-tune 

bioavailability. The design of modified 

peptide sequences adds more complexity 

because of existing over 400 known PTMs 

for design [134]. PTMs and NCAAs 

methods have been at an initial step of 

advancement, which raises the main issue 

in protein structure prediction and de novo 

protein design. 
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