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  ABSTRACT 

This note is prepared by the authors of a recent publication on shared genetic architecture of drug 

response based on summary statistics from genome-wide association studies (GWAS) to propose 

a drug repurposing approach for the treatment of coronavirus COVID-19. The authors proposed 

that in silico studies may be preceded by analyzing shared genetic architecture of drug response 

based on existing GWAS. 
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Since the development of drugs has been 

increasingly challenging due to newly 

identified mechanisms of action, drug 

repurposing has become an attractive option 

for the rapid identification of potential 

therapeutics for combating COVID-19 

pandemic. For this purpose data generated 

through Genome-Wide Association Studies 

(GWAS) hold great potential for identifying 

novel loci for response to drug without priori 

hypothesis [1-4]. Animal and cell-based 

models seldom mimic the human physical 

state for translating preclinical outcomes into 

clinical practice. As GWAS are based on 

clinical human samples with actual 

manifestation of effect, the findings are more 



Afzal et al.  Drug repurposing against COVID-19      

2 
HBB. 4(1): 1-6 

realistically reflect genetic basis of response 

to drugs [2,5,6]. 

In the last two decades, an increasing number 

of GWAS methods and tools have been 

available for exploring the impact of Single 

Nucleotide Polymorphism (SNP) on 

individual drug response, for investigating 

targets and effects of drugs, and prioritize the 

causal genes involved [7-8]. Although small 

effect size of individual SNPs on 

susceptibility of diseases/traits has been a 

matter of serious concern throughout the 

GWAS era, this modest effect size does not 

necessarily dictate low efficacy of 

therapeutic potential of the corresponding 

targets [1,9,11]. Therefore, GWAS data can 

prove a potential source for drug discovery 

and repositioning. 

Recent studies have demonstrated that 

genetically supported targets involving 

causal genes are more likely to be successful 

in Phases II and III of the drug development 

process [12,13]. Once identified, the target 

gene for the associated SNPs need to be 

prioritized as the associated SNP may not 

necessarily represent functionally most 

relevant gene. Along with the prioritization, 

it is often desirable to underscore 

directionality of SNPS-gene relationship in 

order to determine drug repositioning. For 

instance, the identified SNPS may be related 

to the upregulation of to the target gene and 

its protein product inhibitor may be a 

potential repositioning candidate [2]. 

Besides prioritizing the corresponding target 

gene for the associated SNP, it is preferable 

to also determine the directionality of such 

relationships to facilitate drug repositioning. 

For example, if the identified SNP causes an 

upregulation of gene X leading to increased 

risk of a disease, then an inhibitor of its 

protein product may be considered a 

repositioning candidate [2,14]. 

The World Health Organization (WHO) 

announced to help launch four mega trials 

against COVID-19. The WHO-backed trials 

are focusing on drugs that are thought to 

directly block SARS-CoV-2 – the virus strain 

that causes coronavirus COVID-19: 

Remdesivir, lopinavir/ritonavir, chloroquine 

and hydroxychloroquine [3]. There are 

countless other small scale trials coordinated 

in countries worldwide, trials involving 

passive immunization and blocking some 

components of immune system [3,15]. 

Clustering of GWAS data have been used to 

discover phenotypic patterns of cells/tissues, 

sensitivity to drugs, and to detect artifacts of 

experimental conditions [16-18]. Exploring a 

meaningful pattern of genome-wide 

correlations would require identification of 

SNP subsets shaping genetic architecture 
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differentially and giving insight into the 

etiological mechanism underlying the 

phenotype (disease, response to a drug) that 

cannot be detected by standard GWAS [19]. 

We recently introduced a method for analysis 

of shared genetic architecture of drug 

response based on GWAS summary statistics 

and reported six groups of the 40 drugs 

sharing 211 SNP. The phenotypic pattern of 

drugs, associated SNPs and related genes in 

our study revealed a possibility for 

understanding etiological interactions and 

therapeutic mechanism of actions for 

different drugs by highlighting relevant 

biological pathways [1]. One of the clusters 

in our study, comprised efavirenz and 

rifampicin, an antiviral and an anti-tubercular 

drug, respectively. There could be other 

combinations that might be suggested for 

clinical trials and perhaps would show 

beneficial values in controlling the recent 

viral pandemic outbreak. 

A recent in silico study has identified 

rifampicin as the best hit among the selected 

drugs against COVID-19 [3]. Rifampicin is a 

well-established medicine for the treatment 

of tuberculosis and has a stronger binding 

affinity for COVID-19 Main Protease (MPro) 

in comparison to the other drug compounds 

taken in the studies [3,20]. Therefore, use of 

rifampicin has been suggested as a 

repurposed drug for the treatment of COVID-

19.  

An earlier study showed that atazanavir, an 

antiretroviral medication used to treat and 

prevent the human immunodeficiency virus 

(HIV), is the best chemical compound, 

showing a inhibitory potency with Kd of 94.9 

nM against the 2019-nCoV 3C-like 

proteinase, followed by efavirenz (199.2 

nM), ritonavir (204.0 nM), and dolutegravir 

(336.9 nM). Therefore, clustering of 

efavirenz and rifampicin in our study [1], 

suggests use of efavirenz (the brand names 

Sustiva) for the treatment of COVID-19. 

However, this warrants further in silico 

studies of all other potential drugs for 

COVID-19 before initiating in vitro and 

clinical trials [3,21-30]. We propose that all 

such in silico studies may be preceded by 

analyzing shared genetic architecture of drug 

response based on existing GWAS, data 

using the method described by us earlier [1]. 
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